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ABSTRACT

We define the multiplicity and the global multiplicity of an L-packet of
SL(n), unifying lack of multiplicity one and non-rigidity of L-packets.
The first examples of these phenomena were given by Blasius. Giving
a heuristic approach to its calculation, based on Langlands’ Tannakian
formalism, we conjecture that the global multiplicity is bounded in terms
of n only. We justify the heuristics in a special case of L-packets attached
to Hecke characters on an Abelian or p-extension. We then focus on L-
packets lifted from endoscopic tori. A full description of their global
multiplicities is given in the case where n is prime.

1. Introduction

Let G be a reductive group defined over a number field F. The cuspidal spectrum
of G(F)\G(Ar) (with a given central character) decomposes discretely into a
sum of irreducible representations, each occurring with a finite multiplicity. In
the case where G = GL(n) all multiplicities are one in this decomposition ([Sh]).
Moreover, two cuspidal representations with the same Hecke eigenvalues almost.
everywhere are equivalent ([JS]). Cuspidal representations of SL(n) are intimately
related to those of GL{n). However the situation for SL(n) changes dramatically.
For example, it is known since [LL] that L-packets of SL(2) can be infinite,
at least in the unstable case, hence naive strong multiplicity one cannot hold.
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More recently, Blasius constructed cuspidal representations of SL(n) of Galois
type with multiplicity > (n) (where ¢ is Euler’s function). He also showed
that strong multiplicity one does not hold in the level of L-packets, so that two
representations which are a.e. the same do not have to belong to the same L-
packet. In this paper we will be interested in these two phenomena which tie
up in the definition of global multiplicity (see below). The high multiplicities
for SL(n) are not surprising, since the cuspidal spectrum of SL(n) has a natural
action of GL(n, F) on it by conjugation. If one takes into account those additional
symmetries then the multiplicity is one. This is because
Indg; " cr. () Lausp(SLn(F)\ SLa(A)) = L2, (GLn (F)\GLn (A))

cusp

(cf. [LL)). From a different point of view, high multiplicity is related to the
fact that two non-equivalent projective representations of a group may become
equivalent when restricted to any cyclic subgroup. After defining the global mul-
tiplicity of an L-packet and giving some heuristics and examples, we will focus
on a particularly handy case of L-packets which are liftings of endoscopic tori.
The examples given in [B] are a special case of this. It turns out that in this case
the global multiplicity is given naturally by an order of an Abelian group. The
problem of computing the global multiplicity reduces to a completely algebraic
question in representation theory of finite groups. Our results are most complete
in the case where n is prime. In that case we can give a complete classification
of the global multiplicities of endoscopic representations. To state our result, let
F C E be a cyclic extension of prime order p, and let E' be the torus of norm
one elements. The Galois group Z,* and hence also the group ring Z[Z,], act on
the Hecke characters of E1. Let § be a non-trivial Hecke character of E' and
let Ann(f) be its annihilator in Z[Z,]. The global multiplicity of the L-packet of
SL,(F) associated to ¢ is then given by the order of a group Gy C Z, * depending
only on Ann(#). The non-trivial Gy are classified according to the following table

L p | Ann(6) | Go | |Go| | Comments |
any (¢ —-1) z, p—1 Blasius’ example
any (0 - 1)) ()" =
4k +1 (e —1)3) {1} 2

. i g,r primes, g(x) pe Zy[z]
Ll @o-Dpele) (7)) v g(e) | Bple) = 23,

irreducible (of degree r®)

* In this note Z, will always denote the cyclic group Z/nZ.
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(primes which are Fermat or Mersenne numbers are a typical example for the
last row). The essential tool in proving, and even stating, the results is the base
change lift proved first by Arthur and Clozel ([AC]) (see also [Lab]). In the
non-endoscopic case we can give examples of high multiplicity only if we assume
the global Langlands conjecture (see below). I do not know of any example (even
conjectural) which is non-endoscopic and not of Galois type.

The contents of this paper are as follows. In Section 2 we review basic results
about L-packets of SL(n). We observe that the multiplicity of all cuspidal repre-
sentations within an L-packet is constant and we define it to be the multiplicity
of the L-packet. We then define the global multiplicity (denoted by M(-)) of an
L-packet to be the sum of multiplicities of all L-packets which coincide with it
almost everywhere. We can adapt the multiplicity formula of [LL] to the global
multiplicity. We conjecture that the global multiplicity is finite and bounded in
terms of n only. Indeed, there is every reason to believe that this should be true
for any reductive group G.

Section 3 is mostly heuristic. By analogy with the multiplicity formula we con-
sider homomorphisms of a group into a given Lie group G. Two homomorphisms
are equivalent (~) if one is a conjugate of the other by an element of G. A weaker
notion (written ~,,) is that the images of each element are conjugate in G. The
notion was introduced in [GW] (cf. [Lar]). The two notions are the same for
G = GL(n,C) but not for PGL(n,C). The deviation of weak equivalence from
equivalence is “responsible” for high global multiplicities. This is made precise
by Arthur’s multiplicity formula [AG], which reduces to the multiplicity formula
of [LL}] in the SL(n) case. (In other cases, e.g. the group of norm one elements
of a quaternion algebra, the multiplicity formula has another ingredient which
may contribute to high multiplicity.) At any rate, the above deviation can be
quantified and it is bounded in terms of G only. The argument resembles the
usual proof of the finiteness of the number of nilpotent orbits in a Lie group
([Ri]), together with a theorem of Jordan on linear groups. If one believes the
Tannakian formalism of [L1] then this verifies the conjecture made in Section 2,
simply by taking G = PGL(n,C) (the L-group of SL(n)). Still motivated by the
Tannakian formalism we study the difference between the above two equivalence

notions more closely. Given a projective representation « of a group A4, we define
the set

X(a) ={B: A — PGL(n,C): B~y a}/ ~.

The group Aut,,(a) of those automorphisms ¢ of A/ Ker a such that ao¢ ~,, a,
acts (non-transitively in general) on X(a). If a is a projective representation of
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the Langlands’ group then by the multiplicity formula the global multiplicity of
the L-packet attached to « is |X'(a)|. Of course, even if we replace the highly
speculative Langlands group by the Weil group, one does not know in general
how to attach an L-packet L(a) to a projective representation a. Even in cases
where L(a) is known to exist, it is not automatic that M(L(a)) = |X(a)|. We
finish the section by proving this equality for the special case where « is induced
from a character on an extension field E for which either F C E is Abelian, or
the normal closure of F over F' is a p-extension.

In Section 4 we give several examples. In the first one, 7 is attached to a Stone-
von-Neumann representation of a Galois group isomorphic to a Heisenberg group
of a 2m-dimensional symplectic space V over Z,. (More generally, V can be an
Abelian group with a perfect alternating pairing on it.) The case m = 1 was
considered in [B]. The heuristics of Section 3 are applicable and X(a) has the
structure of the homogeneous space GL(2m,Z,)/Sp(2m,Z,) (here n = p™). In
particular M(n) is larger than any polynomial in n. Also, in this example, it is
possible that the multiplicities of the L-packets composing the “L-bag” do not
divide the global multiplicity. In particular they are not all the same necessarily,
giving more motivation to the definition of global multiplicity. The second is a
non-solvable example due to Borovic [Bol. « is now a 9-dimensional projective
representation of Ag, the alternating group on 6 letters. This illustrates a case
where X'(«) is not a homogeneous space. It is composed of two orbits of sizes
1 and 2. Evidently, we can build a Galois representation factoring through a.
Unfortunately, with the present knowledge this example cannot be translated to
the automorphic side. However, we also give another example for which X{«) is
non-homogeneous, and for which we can prove that the global multiplicity of the
corresponding cuspidal L-packet is computed as |X¥(e)|. Finally, it can happen
that two representations (or rather their projectivizations) are weakly equivalent,
even though one is induced from a character on a subnormal subgroup and the
other is not monomial, and the group is solvable. This illustrates the difficulties
in generalizing Theorem 2.

The next three sections are devoted to a study of global multiplicities of the
special case of L-packets defined by taking automorphic induction 7 () of a Hecke
character of a cyclic extension E of order n. These are the endoscopic L-packets
corresponding to elliptic tori. In this case the above heuristics are applicable.
Moreover, X (a) turns out to be a homogeneous space which is actually an Abelian
group which we denote by Gg¢. Here a is the projectivization of the Weil group
representation Indwg 8. Thus the global multiplicity of the L-packet defined by
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7(0) is given by the size the group G, which is fairly computable. As mentioned
above, in the case where n is prime we have Gy < Z and we can actually classify
Gy in terms of the annihilator of  in the group ring Z{Gal(E/F')]. This is done
in Section 6. If n is a prime power, then we still have |Gy| |¢(n). For general n we
have |Gg] < n, but it is not true in general that |Gg| |p(n); we give an example
for n = 3q, ¢ prime that Gg >~ Z,.

ACKNOWLEDGEMENT: This paper is essentially a part of the author’s thesis
([Lap1]). I would like to express my deep gratitude to my thesis advisor Stephen
Gelbart and to Jonathan Rogawski. 1 would also like to thank Don Blasius for
helpful discussions and suggestions.

2. L-packets in SL(n)

Let us recall the definition and the basic properties of L-packets in G = SL(n).
See [LL}], [B]. Recall that an irreducible representation 7 of G(A) is called cuspi-
dal, if m(r) = dim Hom(w, L%, (G(F)\G(A))) > 0.

cusp

Definition 1: Let # be an equivalence class of an irreducible admissible represen-
tation of G = GL(n,A). The L-packet defined by % (denoted by L(#)) is the set
of equivalence classes of irreducible components of fr| G

2.1 REMARKS.

1. Equivalently, we can define an L-packet to be the orbit of an irreducible
admissible representation of G(A) under the natural action of G(A).

2. There is an analogous definition of L-packets in the local case, and if
7 = @T" then

L(7) = QL(7TY) = {®@n": n¥ € L(7") for all v, 7" unramified a.e.}.

3. Locally, if 7 is generic then any 7 € L({7) is generic with respect to some
non-degenerate character ¢ of the maximal unipotent. If 7,7y € L(7)
are 1)-generic then m; = my. Thus fr|G decomposes to a direct sum of
pairwise inequivalent irreducible representations.

4. Although we shall not use this fact, let us note that even in the non-
generic case, the decomposition of 7?1 ¢ 1s multiplicity free. The argument
in [LL] still applies, except that one has to use existence and uniqueness of
(possibly degenerate) Whittaker models (see [Z]). (For another approach
using Langlands’ classification see [T].)
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5. L(71) = L(#2) if and only if there exists an admissible character w such
that 7o ~ 7; ® w (locally and globally).

6. If 7 is cuspidal then £(#) contains a cuspidal representation. Conversely,
any cuspidal 7 belongs to an L-packet which can defined by a cuspidal
representation of G.

7. An L-packet is called stable if all representations in it appear with the
same multiplicity in the cuspidal spectrum. It is conjectured (see [L4]) that
an unstable L-packet is endoscopic, i.e. it can be defined by % which is
an automorphic induction from a cyclic extension F' C E ([AC]) (or
equivalently, # ® w ~ # for some Hecke character w # 1). This would be
a consequence of the stable trace formula for G, as was done in the case
of SL(2) in [LL].

8. Even in the unstable case, it is still true that all cuspidal representations
in an L-packet £ have the same multiplicity in the cuspidal spectrum.
Indeed, if 71, w2 € L are cuspidal (or even generic), we can find an element
g € G(F) such that m, ﬂg are generic with respect to the same character
9 of Ap /F. Consequently, by 3, mp ~ wf and hence m(n3) = m{n). Thus
it makes sense to speak about the multiplicity of an L-packet, and we’ll
denote it by M(L).

9. Let us define equivalence relations on cuspidal representations of G:

(a) 71 ~s 72 if there exists a Hecke character w of Cr = Ip/F* such
that T >~ T @ w.

(b) 7y ~ey 7o if for each place v there exists a character w” of F, such
that 7§ ~ #¥ @ w".

(c) 7y ~y 7 if for almost all v the above holds.

The multiplicity formula (which is written in [LL] in a somewhat confusing
way) says that for a cuspidal 7, M(L(#)) can be calculated as the number
of ~,-classes in the ~,-class of 7. In particular this number is finite.

Let us call two L-packets inseparable (denoted by =) if locally they are the
same almost everywhere. Let us define the global multiplicity as M(L) =
S prap M(L'). Thus M(L(7)) is given by the number of ~-classes in the ~,,-
class of 7. In general, it is not clear why this is always finite. We conjecture the
following;:
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CONJECTURE 1: There exists a constant ¢(n) such that M(L) < e(n) for every
L-packet L of G = SL(n).

We will show that this conjecture is at least in accordance with the Tannakian
formalism of [L1]. An analogous conjecture should be true for any reductive
group. For n = 2 it was shown in [LL] that the multiplicities of the unstable
L-packets are 1; in the stable case Ramakrishnan ([Ra]) uses a nice L-function
argument and a converse theorem for GL(4) to show that, in the above language,
global multiplicities are 1. Thus we can take ¢(2) = 1. For n > 2 Blasius gave
examples where M (L) > 1, as well as examples for which £y = L2 but £3 # Lo.
Actually, both phenomena are implemented by the same type of examples, and
we’ll see that for these examples M(L) = ¢(n).

3. Some heuristics

Let G be a reductive group over C and ¢: G — GL(N,C) a faithful repre-
sentation of it. Let H be a topological group. Consider continuous homomor-
phisms 7: H — G — call them G-representations. Two G-representations mq, 7
are called G-equivalent (denoted by m; ~g m2) if there exists g € G such that
m1(h) = g 'ma(h)g for any h € H. They are ~g-equivalent if after composi-
tion with ¢ they become equivalent representations (in the usual sense). Finally
Ty ~y T if for any element a € H, mi(a) and 72(a) are conjugate in G (cf. [Lar],
[GW]). When there is no ambiguity about the group G we will sometime write
~g for ~q. It is clear that ~;=>~,, =~ for any ¢.

THEOREM 1: Let G, ¢ be as above. There exists a constant C, depending only
on G and N, such that for any compact group H and any G-representation m of
it, the number of ~,-classes inside the ~4-class of 7 is bounded by C.

Proof: The proof will proceed in the following steps.

Note: Henceforth we shall denote by ¢;(D) constants which depend only on the
data D.

1. If Hy < H is of finite index k then a G-representation of H; can be
extended to H in only finitely many ways up to G-equivalence. This
number is bounded by c¢;(k, G).

The proof is a straightforward generalization of that of Theorem 3.1 in
[Ri] (ct. [Bo]). We want to reduce the claim to the case G = GL(N,C),
where it is well known. Let m be a G-representation of H; and choose a
transversal I" of H; in H. We will identify G, through ¢, with a subgroup
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of G; = GL(V). Let g,g: denote the corresponding Lie algebras. Let
U be a complement of g in g; which is Ady, g-invariant for any g € G.
We shall regard extensions of = to G (resp. ()-representations of H as
points in X = G* (resp. X; = GY) simply by specifying them on I'. G
acts on X by conjugation in each component — and analogously Gy acts
on X;. Two extensions of 7 to representations of H become equivalent in
G (resp. G1) if and only if the corresponding points lie in the same orbit
of G' = Cg(n(Hy)) (resp. G} = Cg,(n(H1))). Thus we need to prove
that a G{-orbit O; in X; intersects only a bounded number of G’-orbits
in X. We will prove that any G’-orbit is open in O; N X. For this we
work infinitesimally. Let g’, g} be the Lie algebras of G', G} respectively.
Regard X, as a subvariety of End(V)F. Denote by T/(Y,y) the tangent
space of a variety Y at a point y, and identify T(Y,y) with a subspace of
T(Y1,y) if Y CYy. Take z € W = Oy N X. Then T(O,,z) = [g}, 2] (here
by an abuse of notations, the bracket is taken in gl(V) coordinatewise).
Also, T(X,z) = zg" where the product is taken in End(V) coordinatewise.
Let Z be an irreducible component of W containing . Then T(Z,2) C
T(O1,z) NT(X,z) = [g},z) Nzg". Let 2 € T(Z,z). Then there exist
y € g),9 € g' such that z = [y,z] = zg. Thus in each component
(Adg, z,)(y + gy) = y. Writing y = yo +y, with yo € gand y; € U we
find that necessarily yo = (Ady, z,)(yo + g4). Moreover, since y € g7:
Yo+ 11 = y = (Adg, m(R))y = (Adg, 7(h))(¥) + (Adg, 7(h)) (1) for any
h € H;. We infer that yo € g’ and z = [yo,z] € [¢/,z] = T(O,z) where
O is the G'-orbit of . Thus, we get that O is open in O;. Since this is
true for any O there are only finitely many G’-orbits in W, say m(Oy).
To bound this uniformly, we know that m(0,) is bounded by the number
of connected components of Oy N X. This, in turn, is majorized by the
number of connected components of the fibers of the map G} x X — X3
given by the action. This is bounded by a general theorem in algebraic
geometry. We still have a-priori dependence on G}. However G} can
have only < ¢3(G) possibilities up to conjugacy in G;. In each conjugacy
class we get the required boundedness by considering fibers of the map
G1 X G} x X — Gy x X defined by (g1,9,2) — (g1,9°" - 2).

The Theorem is true in the case where H =T or Z,.

By step 1 we can assume that G is connected. Let T be a maximal torus
in G. Since H contains a dense cyclic subgroup, the image of H can be
conjugated into T. Thus we are reduced to the case where G is a torus,
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where the claim is easy.

3. Any compact connected semisimple Lie group admits only finitely many
G-representations up to G-equivalence.

This is true for G = GL(n) and the general case follows from Theorem 7.1
in [Ri].

4. Let H < GL{n,C) be compact and assume that H/Z(H) is finite. Then
H contains an Abelian normal subgroup of index < c3(n).

We can assume that H acts irreducibly. Then H = H/Z(H) can be
embedded in GL(n?,C) and hence by Jordan’s theorem it contains an
Abelian normal subgroup of index < ¢4(n) ([CR]). Thus we can assume
that H is Abelian. In particular H is nilpotent. Still assuming, as we may,
that H acts irreducibly and faithfully, the action is induced from some

character on some subgroup Hy. Hence any normal subgroup K < Hj is
Abelian.

5. Let H < GL{n,C) be compact. Then H contains a subgroup K of index
< c5{n) of the form HyA where Hy is a connected semisimple compact
group and A < Z(K).

Let H; be the connected component of H. There are only finitely many
compact connected subgroups in GL{n,C) up to isomorphism. Write
H, = Hj - Z(H;) where Hj is the derived group of H;. The canoni-
cal homomorphism ¢: H/H; — Out(H;) = Aut(H;)/Inn(H;) factors
through a quotient of size < ¢g(n). This is because Out(H;) embeds in
Aut(Z(H,)) x Out(H]) ~ GL(r,Z) x Out(H;) and it is a classical result
that finite subgroups of GL(r,Z) have bounded order (see e.g. [S1]). Let
Hy; =Kert. Then Hy = H,C where C = Cy(H,). C satisfies the condi-
tions of 4 and hence contains an Abelian subgroup Cy as above. Clearly
K = H|Cj satisfies the desired property.

6. Finally, we can prove Theorem 1. Let 7 be a G-representation of H, which
we can assume to be faithful. By step 1 we can suppose that H = HpA
as in 5. Let M be the centralizer of 7(Ho) in G, 74 = 7|, A — M
and ¢p = qb’ u- Note that there are only finitely many possibilities for
M up to isomorphism. Any other G-representation 7’ of H with 7’ ~g 7
which is G-equivalent to 7 on Hy gives rise to an M-representation of A,
denoted by 7'y, with 7’y ~g, m4. Clearly, if 7/y ~pr m4 then 7’ ~g 7, so
using step 3 we are reduced to the case where H is Abelian. H is then
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the closure of a subgroup generated by d elements with d < ¢7(G). Let
H = (Tzﬁ x Hi. By using step 2 and the same argument as before we
are reduced to the same question about M-representations of H; where
M = Cg{r(z1)). Thus we can use induction on d to get the required.
| |

To see how to apply the theorem to study multiplicities, assume that the Tan-
nakian formalism of (L1] exists. Recall that this formalism implies the existence
of the so-called Langlands group Lg whose irreducible n-dimensional represen-
tations correspond to the cuspidal representations of GL(n). As in [Ko] §12 we
work with a form of it which is a compact group times R. Thus the image
of the projectivization of any irreducible representation of Lp is compact. Let
G’ = PGL(n,C) (the L-group of G = SL(n)), and Ad: G’ — GL(n?,C) be
the adjoint representation. From now on ~; will stand for ~¢g:. Let % be an
irreducible n-dimensional representation of Lr, and let £, be the corresponding
L-packet in G. This L-packet corresponds to the projectivization 1) of v into
G’. Suppose that the cuspidal representations ;,7 = 1,2 correspond to the irre-
ducible n-dimensional representations 1; of Lg. Then in the notations of 2.1.9,
7y ~g T if and only if 9 ~; ¥ and the same for ~,,. Thus, the multiplicity
formula implies that M(L,,) is majorized by the the number of ~-classes in the
~qd-class of ¥. Hence Conjecture 1 is compatible with the Tannakian formalism
in view of Theorem 1. To obtain the conjecture for a general reductive group
G, we also need to know that the degrees of the virtual characters appearing in
Arthur’s multiplicity formula are bounded in terms of G only.

Still motivated by the Tannakian formalism, let & be a projective representa-
tion a of a group A. We define the set

X(o) = {B: B ~w o}/ ~s

measuring the difference between ~, and ~,. Let M(a) = |[X(a)|. If a is
a projective representation of Lp corresponding to the L-packet £ then one
expects by the multiplicity formula that M(L) = M(a). We will be able to
prove this relation in a special case below, with L replaced by the Weil group
Wpg. The set X(a) has an additional structure. Let Aut,,(a) be the group of
those automorphisms ¢ of A/ Ker a such that @ o ¢ ~,, @. Then Aut,(a) acts
on X(a). This action is not transitive in general. In other words, it may happen
that 8 ~,, a but their image subgroups in PGL{n,C) are not conjugate. The
stabilizer of @ under the action is Aut,(a) = {¢ € Aut(A/Kera): ao ¢ ~; a}.
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We cannot say much in general about the structure of the set X'(«). See examples
in the next section.

Let us introduce some more terminology and notations. We will deal with
automorphic representations induced from cuspidals, in the language of [AC].
This class is preserved under cyclic base change and automorphic induction. We
write these operations as BC? and AIS respectively. These operations are known
to exist also if FF C F is solvable, or more generally, if there exists a series of
cyclic extensions from F' to E. If 7; are cuspidal representations of GL(n;, Ar)
we shall write 7 = B, for the representation parabolically induced from the =;’s.
By abuse of language we call 7 the direct sum of the m;’s. We also call 7; the
components of w. If 7 = Bm;, n’ = B} let c(m, ") = #{(i,5): m ~ 7;}. This
is the same as the order of the pole at s = 1 of the (partial) Jacquet-Shalika
L-function L(7 ® 7', s). We have the following Frobenius reciprocity:

(1) o, Alg(n")) = ¢(BCE(r), ')

whenever 7,7’ are on GL(n,Ar) and GL(m, Ag) respectively. For any two cus-
pidal representations 7,7’ of GL(n, Ar) we define

X(7r,7r'):{w€5’}:7r®w27r'}

and we put X(7) = X{m, 7). Let us call a Weil group representation ¢ auto-
morphic if there exists an automorphic representation 7 (o) of GL(n), necessarily
unique, with matching Langlands parameters almost everywhere. (Of course,
conjecturely, every Weil group representation is automorphic.) We say that (o)
is of Galois type. Finally we call an extension F' C E p-subnormal if it can be
embedded in a normal extension of F' of p-power order. Recall that by [AC] we
know that every representation induced from a Hecke character of a p-subnormal
(or even sub-nilpotent) extension is automorphic.

LEMMA 1:

1. Letw be a cuspidal representation of GL(n, Ar) and assume that | X (r)| >
n?. Then 7 is of Galois type, | X (r)| = n?, and the base change of 7 to the
Abelian extension of F' defined by X (r) is equivalent to n times a Hecke
character.

2. Let F C E be a solvable Galois extension and m be a cuspidal represen-
tation of GL(n,Ar). Suppose that p is a component of BCE 7 and let
F C L CE be the field defined by H = {0 € Gal(E/F): p° ~ p}. Suppose
that F' C L is subnormal. Then r is induced from L.
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Proof:

1. By Theorem 4.2 in {([AC]) we can write 7 as the automorphic induction
of some cuspidal representation x of GL(m,Ag) with E/F cyclic and
m[E: F] = n. We claim that | X (x)| > m?. Indeed, n®w ~ 7 implies that
X®wg =~ x° for some o € Gal(E/F) where wg = woNm%. Thus for some
a, | X(x,x%)| = m? But then, | X(x)| = |X(x,x°)| > m?. By induction,
w is induced from a Hecke character, and hence is of Galois type. The last
two statements are true since they hold in the Galois side.

2. Let BCE(r) = d Hyeme p° and BCE(r) = Md;p; with p; cuspidal.
Suppose without loss of generality that BCZ(p;) contains p as a com-
ponent. By the definition of L and the properties of base change we
must have BCY(p,) = mp for some m. We claim that 7 = AI¥ (p;).
Indeed, c(m,AIf p) > 1. However deg(AIf(p1)) = [G: H]mdeg(p) <
[G: H]d deg(p) = n, and we get the required. |

THEOREM 2: Assume that F C E is an extension of number fields which is
either p-subnormal or Abelian. Let 6 be a Hecke character of E and £ = Indwg 6.
Suppose that 7 = 7(£) is cuspidal (i.e. £ is irreducible). Then M(L(7)) = M(£).*

Proof: Note that it will be enough to prove the following:

(2) Every 7/ ~, 7 is of Galois type
and
(3) Every &' ~,, £ is automorphic.

This will imply the Theorem, because the definitions of ~4 and ~,, in the auto-
morphic and in the Galois side are compatible by Chebotarev’s density theorem.
Let then 7' be given. We prove (2) using the results of [AC] by the following
steps.

1. Let K be the normal closure of F C E and let 7,7’ be the base change to
K of %, respectively. By the properties of base change we have 7 ~, 7'.
Let G = Gal(K/F'). By the properties of base change we can write 7 =
EEIgeGal(K/E)\GG%, where g =0 o ng, and 7" = d B\ ¢ p? where pis a
cuspidal representation of some GL{m, Ak ) and H = {g € G: p? ~ p}.

* Recently, we were able to prove the Theorem for F' C E nilpotent (see [Lap2]).
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2. We have | X (p)| > m?.

Indeed, since 7 ~,, 7' we have an equality
(4) L1 ®%Qw,s) =L &7 ®u,s)

of Jacquet—Shalika L-functions for any Hecke character w of K. By the
results of [JS]
Z Orde—; L% (1 ® 7 Q w, s) = n?,

while

Z Ordy—; L(' @ 7/ @ w, ) = d° Z 1X (0%, p9 ).
w 9,9'€H\G

Thus, | X (p%, p9')| > m? for some g,¢' € H\G. Then necessarily | X (p)| =
1X(0%)| = [X (0% p% )| 2 m.

3. By Lemma 1, p is of Galois type and

(5) X (p)] = m?.

4. Let K C L be the Abelian extension defined by X (p). Then F C L is
Galois and the base change of 7’ to L is a sum of characters.

By the argument of step 2, taking into account (5), we must have | X (p, p9)|
=m? > 0 for any g € H\G and hence X (p)? = X(p?) = X(p). The other
statement follows from part 1 of Lemma 1.

5. Any component of a representation induced from a Hecke character of a
nilpotent extension is of Galois type.

Indeed, if L C M is nilpotent and & is a Hecke character of M then it is
easy to see that we have a decomposition Indw’;l K~ @Ind%ﬁd . A, into
a sum of irreducible representations, with Hecke characters A; of fields
M c M; C L. Then 7(x) > B7(};) is the decomposition of 7 (k).

6. Suppose that F' C K is a p-extension. Then by (1) and part 1 of Lemma
1, 7' is a component of a representation induced from a Hecke character
of L. This proves (2) in that case.

7. Let us turn to the case where F C E is Abelian. First, we claim that
d=m.
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Tor now, £ = K and we know that 69 # 6 for any 1 # g € G. Comparing
the orders of the poles at s = 1 for w = 1 in (4) we get n = d*[G: H]. On
the other hand n = d[G: H]m.

Let us write ¢4(x) = x9/x for any g € G and a Hecke character x of E.
Define H' = {g € G: ¢4(6) € X := X(p)}. Then H' is a subgroup of
order d?, and if F € M’ C E is the field defined by H' then M’ C L is
nilpotent.

Indeed, it is easy to see that H' is a subgroup. Also, from (4) we have an
equality
{cg(0): 9,9 €GY=d* |J X(o°p%)

9.9'€H\G
of multisets. Every element of X appears in the right hand side d%[G: H| =
n times. This implies that |H'| = d?. In other words, g — ¢4(f) is a
bijection between H' and X. Let X, be the p-Sylow subgroup of X. Then
H), := {g € G: c4(0) € X,} is the p-Sylow subgroup of H'. Suppose that
g € H,and ¢’ € Hy for p # q. Then cg(cg(0)) = cgr(cg(0)) € XN Xy =0.
Thus, H,, acts trivially on X,. It follows that L/M’ is nilpotent.

Let FF C M C E be the field defined by H. Then M C L is nilpotent.

Equivalently, there exists k so that cu,{(...cp,(z)...) = 1 for any
hi,...,hxy € H and z € X. We know that such a relation holds if
hi,...,hx € H'. Thus, it will be enough to show that for any hy,he € H
and z € X there exists b’ € H' and 2’ € X such that ca, (ch,(z)) = cp (2').
This will follow if we know that cn(cy(6)) € X for any h € H,g € G. To
see this, let w = ¢,(0) € X (p9', p9) for some g1,92 € G. Then

P @w =~ p%? ___pyzh ':pg‘h®wh =p% @ wh
whence ¢, (w) € X as required.

From 4,5 and part 1 of Lemma 1 (applied to #') we derive (2) in the
Abelian case.

The statement (3) is proved similarly. ]
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4. Some examples

We first begin with a definition.

Definition 2: Let G be a finite group with center Z and let G = G/Z.

1. A faithful irreducible n-dimensional representation m of G (or the corre-
sponding projective representation 7 of G) is called minimal if the image
of 7 in PGL(n,C) has order n?. (Note that by Burnside’s theorem, the
above order is always > n?.)

2. a cocycle a € H*(G,C*) is called minimal if the twisted group algebra
C[G, ] is simple.

LeEMMA 2: The following are equivalent for a faithful irreducible n-dimensional
representation 7 of a finite group G.
1. m is minimal.
2. The cocycle on G defined by the projective representation & is minimal.
3. Indg ( is isotypic where ( Is the central character of 7.
4. The character of m vanishes outside Z.

In that case, any irreducible n-dimensional representation ' of G is minimal and

7! ~y T (in PGL(n,C)).
Proof: The equivalence of the above conditions is a standard exercise in repre-
sentation theory of finite groups. The other assertion follows from 4. |

For W Abelian, the Schur multipliers correspond to alternating bilinear forms,
and the minimal cocycles correspond to the non-degenerate ones. Minimal rep-
resentations and cocycles were first studied (not under this name) in [IM] (see
[S2] p. 172 for another appearance of them).

1. Our first example is an Abelian group W of order n? with a non-degenerate
alternating form @ on it. This gives rise to an irreducible n-dimensional
minimal projective representation a of W. Then Aut,(a) = Aut(W). On
the other hand Aut,{a) = Sp(W,@). Any other projective minimal rep-
resentation of W is of this form, and since all non-degenerate alternating
forms are conjugate, we conclude that X{a) = Awt(W)/Sp(W,Q). In
particular, if W be 2m-dimensional vector space over Z,, « is the Stone—
von-Neumann representation of the corresponding Heisenberg group and
X(a) = GL(2m,Z,)/ Sp(2m, Z,). Of course, Theorem 2 is applicable here
(and in fact, its proof in this case is much easier).
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This example is also useful in showing that in general we don’t have
M(L)M(L). In particular we can have £ = £’ with different (positive)
multiplicities. Indeed, take m = 2 and take a 2-dimensional subspace V'
of W, generated by vy,ve. Let 8: Gal(F/F) — PGL(n,C) be a projec-
tive Galois representation which implements o and let 8: Gal(K/F) —
GL(n,C) be a lifting of it to a Galois representation. We can construct it
so that K is ramified over F' at exactly one place v in which 8(D,) ~ a(V)
where D, is the decomposition group. For any ¢ € Aut(W), let Ly be the
L-packet attached to the projective Galois representation v o § (that is,
the one which is defined by a cuspidal representation corresponding to a
Galois representation lifting it). In this case the correspondence of Galois
representations to automorphic representations is functorial (globally and
locally). We can infer by the multiplicity formula that M(L,) is given by
the number of ¢’ in GL(4,Zy)/ Sp(4, Z) such that 4’|V ~, ¢|V. In other
words, the condition is that Q(v'(v1),v'(v2)) = Q(¥(v1),9¥(vs)). There
are (p* — 1)(p° — p)(p* — p?)(p* — p°) such ¢/'-s (in GL(4,Z,)) if (V) is
isotropic and (p* — 1)p®(p* — p*)(p* — p?) of them otherwise.

Let us consider a non-solvable case. The following is a nice example of
Borovic ([Bo]; see also [GW]). Originally it was studied in connection with
embeddings of finite groups in the exceptional group Es(C), but it is also
relevant to our case. Let Ag be the alternating group on 6 letters. It admits
a non-trivial triple cover ;1\6, which is unique up to isomorphism. There are
3 irreducible 9-dimensional representations of 71;;. Exactly one of them,
say «, factors through Ag. Thus Aut, (&) = Aut(Ag) acts trivially on a.
(Recall that Ag is special in that [Aut(Ag): Sg] = 2.) Let £;,i = 1,2 be
the other 9-dimensional representations. Looking at the character table of
Ag we see that f; ~y, @. Since Ag has no non-trivial characters, 3 %s Gs.
Let ¢ be an outer automorphism of Ag coming from Ss. We claim that
B2 ~s B1o¢. For otherwise §; ~; B o ¢, giving rise to a projective
representation of S¢. However there is no non-trivial triple cover of Sg
([Su]). We conclude that

X((j) = {d, 18—17 52}
with orbits {&}, {81, 52}. Of course, we can find a Galois representation

factoring through . However, with the present knowledge, this example
does not carry over to the automorphic side.
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3. We now give an example showing that there is no hope for the method
of proof of theorem 2 to work if we only assume that E/F is subsolvable.
More specifically, we will give an example of two representations m;, 72 of a
finite solvable group, such that 7 is induced from a character of a subnor-
mal subgroup, 72 is not monomial, but nevertheless their projectivizations
are weakly equivalent. Thus, if we realize 7, 72 as Galois representations
then m; is automorphic, but it is not clear that 79 is automorphic.

Recall that if
1—-N—-G—K—1

is an exact sequence of groups, and 7 is an irreducible representation of
N such that 79 ~ 7 for all g € G, then the obstruction of extending 7 to
G lies in H(K,C*) and is given by

a(z,y) = A(g:) A(gy) Algey) "' m(geygy '97 1)

Here, {g;}zen is any transversal of N in G and A(g) is an intertwining
operator of m and 79. In this case, Endg (Ind$ 7) ~ C[K, o]

To construct the sought after example, suppose that we are given two
Abelian- groups A, B of odd and coprime orders with an action v of B
on A. Suppose that there exist two pairs of non-degenerate Q/Z-valued
alternating bilinear forms (-, -);,[-,J;,¢ = 1,2 on A and B respectively with
the following properties:

(a) B preserves (-,-);,i=1,2.

(b) There exist maximal (-,-)1 ([, ]1)-isotropic subgroups A; (B;) of A
(B) respectively so that A; is B-invariant and B; acts trivially on
AJAq.

(¢) There do not exist maximal {-, -)2 (|-, -]2)-isotropic subgroups A (B2)
of A (B) respectively so that Ag is Bg-invariant.

Let H;,¢ = 1,2 be the Heisenberg group attached to A4,({,-);. This is
a central extension of Z = Q/Z by A; with a cocycle corresponding to
{-,-)i- Let ¢ be the character z — €™ of Z and let 7; be the Stone-
von Neumann representation of H; with central character 1. This is a
minimal representation. Let Aut.(H;) be the automorphisms of H; which
act trivially on the center. The exact sequence

0 — Inn(H;)/Z — Aut(H;) — Outo(H;) ~ Sp(4;, (-,-);) — 0
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splits. Thus, the extensions of H; by a group K which acts via some
§: K — Out.(H;) are classified by H?(K,Q/Z). Let G; be the extension
of H; by B defined by the cocycle §; corresponding to [-,-];. Note that
W =G;/Z ~ Ax,B.
PROPOSITION 1: Under the above assumptions:

(a) Indgi T; is isotypic.

(b) Its irreducible component 7; is a minimal representation.

¢) Viewed as projective representations of W we have Ty ~,, ma.

)

(c)

(d) m is induced from a subnormal subgroup of G;.
)

(e) w9 is not monomial.
Proof:

(a) Clearly 77 ~ 7, for any g € Aut.(H;). Since (|A],|B|) = 1, 7; extends
to a representation of H; x B. Thus, the obstruction of lifting 7; to
G; is given by §;. Hence, End(Indg: 7;) is simple and Ind}G{i T; is
isotypic.

(b) This follows immediately from 1 and the minimality of 7.

(c) This follows from Lemma 2.

(d) By our conditions we can lift the subquotient A; to a subgroup of
H; and Bj to a subgroup of G;. The formula 6,(zab) = v(z) defines
a character on the subnormal subgroup K; = ZA; B;, extending .
Thus m; = Ind§! 6;.

(e) Suppose that 8 is an extension of i to a subgroup K, of Gy. Af-
ter conjugation we can assume that the image of K3 in W is A3B»
with A2 < A, By < B. Then necessarily A, is (-,-)2-isotropic and
By is [-,-]-isotropic. Since Ay, By cannot be both maximal by our
conditions, 72 is not monomial. ]

It is east to construct A4, B, (-, )4, [, ]i,% = 1,2 as above.

. Next, let us give an example for which theorem 2 is applicable and for

which X(a) is not homogeneous. Again, this is a minimal projective
representation of a meta Abelian group G = A x B. Let A,{(,,-) be a
4-dimensional simplectic vector space over Z, for some p > 2 and let By
be the unipotent radical of the Siegel parabolic of Sp(4), acting on A by
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ai. Let H be the Heisenberg group attached to A. Put B = B; x By, act-
ing on A by a3 x 1. Note that the center of G is Z' = A; x (1 x By) where
Ajp is maximal isotropic. Let now [-,]; (resp. [-,-]2) be a non-degenerate
skew symmetric form on B for which 1 x Bj is isotropic (non-isotropic).
As before, we construct from this data two minimal projective represen-
tations m; of G by inducing the Stone-von Neumann representation 7 of
H to the extension of H by B defined by [-,-];. Here we use the fact that
7 extends to a representation of H x B. This is true since 7 = Ind%, §
where A = ZA; and #(za) = %(z) is invariant under B (Z, v are as
before). Thus w1 ~,, 72 and Theorem 2 certainly applies. However 7 is
the projectivization of a representation induced from a character on the
inverse image of Z’ and this is not true for m. Thus 7, is not obtained
from 71 by an automorphism of G and X(7;) is non-homogeneous.

5. In the rest of the article, we focus on the case of representations induced
from characters on a normal subgroup with a cyclic quotient.

5. Multiplicities of endoscopic L-packets induced from elliptic tori:
basic facts

Let us now turn into a special case, namely the simplest endoscopic L-packets —
those induced from elliptic tori. Let then E be a cyclic extension of F of degree
n, and 0 a Hecke character of E. Let # = #(6) be the representation of GL(n)
given by the automorphic induction of 8. The existence of these representations
was stated in [K] but was not proved before the general result of [AC]. (In the
local case, the lifting was proved by Kazhdan in [K]; c¢f. [H]. See [HH] for a
more complete history). #(f) will be cuspidal if and only if 89 # 6 for any
1# g € G = Gal(E/F). Henceforth we assume that this is the case. Fix a
generator o of G. G acts on W ~ Cg and on WE, hence also does Z[G]. It will
be convenient to use additive notation, e.g. (o —1)8 is the character a — 8(a® /a).
Consider the following equivalence relations on characters of Cg:

1. 61 ~5 0y if there exists a € Z,, s.t. (¢ —1)0%h; = (0 — 1)6s.

2. 0y ~y, Oy if for every a € Cg there exists C € C* such that the multi-sets
{0%61(a)} and C{c*02(a)} are equal.

3. 61 ~qq 02 if Ado ® 0?0, ~ Ado @ 00, where Ad: GL(n,C) — GL(n?,C)
is the adjoint representation.
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5.1 REMARKS.

1. ~g=rvy=>rvyq. For n = 2 they are all equivalent.

2. If 0; ~; 62 and z € Z[G] then z6; ~; 26,. Similarly for ~,, and ~g4.

3. For all these relations the class of # depends only on its restriction to the
norm one elements CL, = (¢ — 1)Cg of Cg.

4. The above equivalence relations on characters reflect the corresponding
relations for the Weil group representations induced by them, i.e.,
Ind}yF 6, ~, IndjyF 6, <= 6y ~, 02, and similarly for the others.
To see this for ~,, one has to note that for any a € Wg

w Wp g _ (a)
Resiyf Indyf0 = €D Indi,, 607
T€Wp/WEg{a)

5. From this we can infer that #(8;) ~s #(62) <= 61 ~; 62, and anal-
ogously for ~,,. This follows from the basic properties of automorphic
induction, strong multiplicity one for GL(n), and Chebotarev’s density
theorem.

6. Let
o

::11 € ZM/(Z a¥), for a € Zy,.

It is clear that 6; ~uq 02 implies that there exists an a such that 6; ~g

To =

za02.
LEMMA 3: If 0y ~y, 02 then nf; ~, nfs.

Proof: For each a € Cg choose a permutation 7 of Z, and C € C* so that
ci01(a) = 0™D3(a)C. We have (0! — 1)81(a) = (6™ — 0P)62(a), where
B = m(0). Multiplying over ¢ and taking a = (o — 1)b we get n(c — 1)0;(b) =
n(o — 1)aP6,(b). Similarly we get

(6) n(o — 1)6*01(b) = n(o — 1)o™?6,(b)

for any i. A priori 7 depends on b but now we can choose a permutation so that
(6) holds for all b € A. |

Let us define Gy to be the equivalence classes of {z € Z[G]: z0 ~,, 6} under
the relation z6 ~, y6. By Remark 2 above, the product on Gy makes sense.
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THEOREM 3: Let 8 be a Hecke character of E. Then Gy forms an Abelian group,
X(7(0)) ~ Gy, and M(L(7(0))) = |Gp| < n.

Proof: 1t follows from Remarks 6 and 2 that Gy is a group of order < n. Let
w be a character of Ip with Kerw = F*Nml%}. The cuspidal representations
# which are automorphic induction from characters of E are characterized by
the property that # ® w ~ 7, and thus they are stable under ~,,. Let o =
Ind%; f: Wrp — PGL(n,C) and A = Ima. We can assume that o(Wg) is
diagonal. Choose & € Wy above 0. If 8; ~,, 6 we can construct an element
in Aut,,(A) sending the diagonal matrix (6(af))geg to (61(a?))geg for a € Wg,
and (&) to itself. This gives an isomorphism of Gy with X (7(8)). It remains to
invoke 5. |

Remark:

1. We could of course appeal to Theorem 2 to conclude that M(L(7(9))) =
| X(7(6))|, but this case is easy to analyze directly.

2. The above characterization of cuspidal representations induced from
characters (in the cyclic case) in terms of being self twists under a Hecke
character is proved in [AC] only in the prime case. This is mainly for
historical reasons. In any case Labesse ([Lab]) treats the general case.

6. Multiplicities of endoscopic L-packets of SL(n), n prime

We keep the same notations as in the previous section but in this section we will
assume that n > 2 is prime. Let e: Z[G] — Z be the augmentation homomor-
phism.

LEMMA 4: Let 7 € Z[G) and suppose that (e(7),n) = 1. Then there exists
1 € Z|G) such that 1 = m for some m € Z with (m,n) = 1.

Proof: If 7 = Z::Ol a;c' then the equation 7 = 1 is a linear system
whose coefficients matrix is {a;—;}: j=0,..,n~1. This matrix has determinant
s Z;:Ol a;j¢¥ where ( is a primitive n-th root of unity. This product is
congruent to e(7)" mod(¢ — 1). Since (¢ —1)?™ = (n) in Z[¢] the Lemma follows

from Cramer’s rule. [ |

We say that a character is torsion (resp. n-torsion, fi-torsion) if its order is
finite (resp. an n-power, relatively prime to n).
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THEOREM 4: If Gy # 1 then 0| ci is torsion, but not fi-torsion and e induces an
injective homomorphism of Gy into Zy.

Proof: Suppose that Gg # 1. By 6, £,0 ~,, 8 but z,8 £, 6 for some a. By
Lemma 3, n(z4 — 0*)(c —1)# = 0 for some i and by Lemma 4, (¢ — 1) is torsion.
On the other hand, it follows from Lemma 3 that (¢ — 1)6 is not 7i-torsion, since
zo0 #s 0. Now, 26 ~ 0 for = € Z[G] means that (z — 0*)(c — 1)8 = 0 for some
i, and by Lemma 4 we get that €(z) = 1. On the other hand if 26 ~,, 8 with
e(z) = 1 then by Remark 6 of Section 5.1 we get that 28 ~; z,0 for a € Z,, and
again by Lemma 4, @ = 1, otherwise (¢ — 1)6 would be 7i-torsion. B

Now we want to have some more information about the group Go.

6.1 THE n-TORSION CASE.

PROPOSITION 2: Suppose that 0|C1 is m-torsion and Gy # 1. Then 6|C1 has
order n and one of the following holds:

1. (0 —1)20 =0 and then Gy = Z}, or,

2. 1 does not hold but (0 —1)36 = 0. Then Gy = {quadratic residues mod n},

or
3. 1 and 2 do not hold but (¢ — 1)*¢ = 0 and n = 1 (mod4), in which case
Gy = {d:l}.

Proof: Suppose 1 # a € Gp. By Lemma 3 we infer that n(c —1)(z, —0?)8 = 0,
for some . Using Lemma 4 once again we conclude that n(c — 1) = 0.

Suppose that 1 holds. For any i, (¢* — 1) = (¢ — 1)z;0 = (6 — 1)i6. The same
is true for z,0 for any a € Z;, so that

{0*6(a)} = 8(a){(¢* — 1)6(a)} = b(a){i(o — 1)6(a)}

and
{0%2,0(a)} = 2,0(a){i(c ~ 1)za0(a)} = zo8(a){ic(a — 1)6(a)}
and the first part follows since (¢ — 1)8(a) is an n-th root of unity.
Suppose now that 2 is satisfied. Let s = (¢ — 1)8(a), t = (¢ — 1)26(a). Then
we have (o — 1)0*0(a) = ((a — 1)+ z;(0 — 1)?)8(a) = st?, so that (¢* — 1)8(a)
¥ ]_0(0' —1)076(a) = s't{2). We have an analogous formula for z,0 with s' =

(o™ —1)0(a) = sot(3) and ¢’ = ¢o. Choosing t # 1 and rewrite the condition

i

{(¢* — 1)8(a)} = const{(c* — 1)z,0}
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as a congruence relation modulo n. (Note that the implied constant is an n-th
root of unity.) We get two polynomials in Z, of degree 2 whose leading terms
differ by a factor of a and whose images differ by an additive constant (as multi-
sets). Since we can transfer the polynomials into monomials of degree 2 without
changing this property, it is clear that this can hold if and only if « is a quadratic
residue mod n.

Suppose now that 1 does not hold. Since z,6 ~gq 6 we know that for any
i, (za(c® — 1) — 0P(07 — 1))§ = 0 for some 3, where necessarily (by Lemma
4) j = ia. Taking i = 2 we find that (0® — 1)(0 + 1 - 0P(0® +1))0 = 0, or
(6* —=1)(0 = 1)(0zp-1 + Ta4+p)0 = 0. Once again, by Lemma 4 we can infer that
1-8=a+pA Ifa#—1 it means that (¢ — 1)30 = 0.

It remains therefore to consider the case o = —1. Certainly z,6 ~s; —6. Since
n(oc — 1)§ = 0 it follows that (¢ — 1)"8 = 0 (in fact the two conditions are
equivalent). For any a € Cg, let &(a) = (¢ — 1)*6(a),i = 0,1,...,n — 1. Let
b= Z;:Ol k;o'a. A straightforward computation, generalizing the previous ones,
yields

(gn—l(b), o ?£O(b)) =
(Gt (@) 25 Enma(@) it ()22, |
£o(a) =Rty (@) Figy(a)2 D g ()2 (20,

Let k < n be minimal such that (c—1)*@ = 0 and suppose that (c—1)*~*8(a) # 1.
From the computation it follows easily that every k-tuple ({",...,{"~1) of n-th
roots of unity can be represented as (£o(b), ..., &x—1(b)) for some b of the above
form. On the other hand, by the same computation o*6(b) = CZ:;J (;)"’ The
exponent can be an arbitrary polynomial (in ¢) of degree < k. We are reduced to
the question of whether for an arbitrary polynomial f(z) over Z, of degree < k,

there exists ¢ so that

(7) {f@)} ={-f@}+c

as multi-sets. For f of degree 2 we saw that this holds if and only if —1 is a
square. For f of degree 1 or 3 this clearly holds automatically if n > 3. However,
this condition cannot hold for k = 4. For example, take f(z) = z2(z% — 1) and
suppose that (7) holds. Since the value 0 is obtained thrice and all other values are
obtained an even number of times, ¢ = 0. We could infer that 3, ; f (@f=0
whenever [ is odd. We can write this as Zg.:O(—l)l_j (;)52j+21 where 4, =
Yicz, ™ =~1if m =n 1 and 0 otherwise. By choosing [ to be the smallest
odd integer > (n — 1)/4 we get a contradiction. These considerations complete
the proof of the Proposition. B
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Remark: In the same way as in part 1 of the Proposition it can be shown that
for general n and a character § with (¢ — 1)260 = 0, we have Gy ~ Z}. The
examples in [B] are of this type.

6.2 CONDITIONS ON THE fi-TORSION PART.  Recall that we want to classify
the condition Gy # 1. We already know what happens in the cases where 0| o
is either n-torsion or fi-torsion. To treat the general case let 1 # o € Z; and let
7,9 be the restrictions of § to the n-torsion and fi-torsion parts A,,,A5 of (¢ —1)8
respectively. We shall assume that (¢ — 1), (6 — 1) # 0.

PROPOSITION 3: « € Gy if an only if (6 — 1)?n =0 and for any b € (0 — 1)A;
there exists t so that

(8) o ®(b) = o*tiap(b)  for all .

Proof: Suppose that a € Gg. Arguing as before with Lemmas 3 and 4 we get
that n{c — 1)n = 0 and there exists 3 such that

(9) oP(o 1) = (0 — zay.

Choose a € Ay, such that { = (o —1)n(a) # 1, but (¢ —1)*n(a) = 1 for any ¢ > 1.
Take any b € Az and write & = (o — 1)¢(b). By our assumption we have

(10) {(o* = )n(a)(0* — D)p(8))} = const{(o" — )zan(a)(o” — D)o p(b)}

and according to the computations of Proposition 2 this means that {C*¢;} =
const{¢*®¢;}. The implied constant is certainly an n-th root of unity so write
it as ¢t. Let m be a permutation achieving this equality. The condition ¢%¢; =
CtC"(i)"‘E,,(i) implies that & = &r(;) and i = t + 7(i)a, so that condition (8) is
satisfied for all b € A;.

In the converse direction, one can reverse the arguments to conclude that
a € Gy as long as (6—1)?n = 0 and (8) is satisfied for all b € A;. To prove the last
statement, note first that (8) implies that ®o*(c — 1)(¢® — 1)1 = ®ot(o — 1)%¢.
Hence, (0 — 1)%(z4 — 0P)9p = 0 for some 3. However, (0 — 1)?|n(c — 1) in
Z[G], so that (9) is satisfied. Now, by (9) and (8) applied to (¢ — 1)b we infer
that o' (c® ~ 1)9(b) = o+*TF (0 — 1)y(b) for some t. This means that ¢ =
(o™ — o™*t*+P)4h(b) does not depend on i. However, ¢* = 1, whence ¢ = 1 and
(8) is indeed satisfied for all b € A;.

It remains to show that @ € Gg implies that (¢ — 1) = 0. Assume on
the contrary that (¢ — 1)?n # 0. The same arguments as in Proposition 2
yield that either (¢ —1)%0 = 0 ora = -1 and n = 1 (mod 4). The first
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alternative implies that n(g—1)0 = 0 which contradicts our assumption. Suppose
then that o = —1. In condition (9), 8 = -1, ie., 2(c — 1)y = 0, because
otherwise (1 + o?*1)(¢ — 1)y = 0 which would imply that (¢ — 1)1 = 0 since
(14 oP+1) = (02B+D) — 1) /(P! — 1) is invertible. We already know that (8) is
satisfied. For any k we can take an element a € A, such that ¢ = (¢ — 1)?n(a) #
1,(c — 1)n(a) = ¢*, but (0 — 1)'n(a) = 1 for any ¢ > 2. Writing the condition
(10) using the computation of Proposition 2 yields {C(;)‘H“i&} = c{(_(;)_kifi}.
Again, ¢ = (' and if 7 implements this equality it is easy to see that & = &.;
and {7(s +1),7(s —4)} = {s +iv,s —iv}, for s =1/2 -k, v> = —1 and any .
Taking s so that £4; = &, for each ¢ (by (8)), we see that (8} is satisfied for
« = 7 as well. This will contradict the next Proposition. B

PROPOSITION 4: Let 1 be as above and B = Aj;. Then v satisfies the condition
(8) for any b € (¢ — 1)B if and only if there exist primes g, such that
g -1

n=———>, qo—-1)y=0, (c-1)go)p=0
q -1

for some irreducible polynomial g(x) € Z,[z] which divides (z™ —1)/(z — 1) and
o€ (qrs_l). In particular o has a prime order.

Proof: Suppose first that ¢(oc — 1)1y = 0 for some prime g. The set of all n-tuples
of the form {(1(b), a9 (b),...,a™ ¢(b)): b € (0 — 1)B} can be thought of as an
ideal I in Z,[z]/(2™ — 1) and is therefore generated by a polynomial f(z)|z™ — 1.
Certainly z — 1| f(z). In this setting condition (8) translates into the following:

for any h(z) € I there exists k so that
(11) #(z) = z"h(z) satisfies p(z*) = ¢(x)

(unless otherwise indicated = will always mean (modz™ — 1)). Moreover, it is
clear that this k is unique unless h(z) = 0 (since z—1 € I). In particular suppose
that

(12) f(z®) = 2* f(2).

Let g(z) = (2™ — 1)/f(z) and let H = {h(z) € Z4[z]/(g(z)): h(z*) = h(x)
(mod g(z))}. This is well defined by (12). Let d = dimH. Clearly h(z) € H
if and only if ¢(z) = f(x)h(z) satisfies #(z*) = z*¢(x). This and (11) imply
that ez 2FH = Z,[2]/(g(x)), where the union is disjoint, except for 0. We
get n(g? — 1) = ¢™ — 1 where m = deg(g). Clearly, this implies that m = r®
and d = r°! for some r prime. Also, the order of q in Z% is m. Hence, g(z)
is irreducible over Z,. This and (12) imply that & € (g). H can now be viewed
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as the subfield of GF(¢™) of the invariant elements under the transformation
z +— %, and thus has dimension m/ |a|. Hence « has order r. It is clear that
(o — (o) = 0.

The arguments can be reversed provided that (12) is satisfied. To see this, take
a root y of g(z) and note that f(y)>~! is of order n and hence can be expressed
as y*.

It remains to prove that condition (8) implies that g(c —1)% = 0. It is already
clear that {c — 1)1 is g-torsion where ¢ is determined by « (« represented in
{0,...,n — 1} is a g-power). Suppose on the contrary that ¢(o — 1)¢) # 0. We
can assume that ¢%(c—1)y = 0. Again we have the set {(¥(b),...,0™ 14(b)),b €
(0 — 1)B} which can be thought of as an ideal I in Zg[z]/(z™ — 1). This ring
is not a principal ideal domain any more. However property (11) still holds.
Let ¢: Zgz[z]/(z™ — 1) — Z4[z]/(z™ — 1) be the canonical homomorphism, and
let f(z) € I be such that ¢f(z) # 0. It is clear that the ¢(I) is the corre-
sponding module for gy and hence by the first part of the proof we know that
Zq[z]/{h(z): h(z)p(I) = 0} has cardinality ¢"" and is an irreducible module
over Zg[z]/(z™ — 1). Hence it is equal to Z,[z]/{h(z): h(z)¢(f(z)) = 0}. Tt is
still true as before that |z z*H = M, where now H = {h(z): f(z)h(z*) =
f(z)h(z)}/{h(z): f(z)h(z) = 0} and M = Zg[z]/{h(z): f(z)h(z) = 0}. More-
over, the union is disjoint except for 0. Again, this implies that n = (¢™ —
1)/(q% — 1) where |H| = ¢, |M| = ¢™. Hence m = r*. However this would
imply that the canonical surjection M — Zg[z]/{h(z): h(z)¢(f(z)) =0} is a
bijection and this is absurd since q is in the kernel. This finishes the proof of the
Proposition. |

6.3 FINAL CLASSIFICATION.

THEOREM 5: Let F' C E be a cyclic extension of prime order n and let 8 be a
Hecke character of E. Denote by 8’ its (non-trivial) restriction to the norm one
elements. Let Gy C Z, be as above. Then M(L{#(8))) = |Gy|. Moreover Gy # 1
if and only if one of the following happens:
1. ¢ is G-invariant.
2. (0 —1)%¢' =0 (but not 5).
3. n=1 (mod 4) and (0 —1)3¢' =0 (but not 5 or 5).
4. n= (¢ —1)/(¢"""" —1) for some primes q,r and some s, glc — 1)’ =0
(but g9’ # 0) and ng(0)8’ = 0 (but nd’ # 0) for some irreducible polynomial
g(z) € Zy[z] (of degree r°) which divides (™ — 1)/(z — 1).
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Correspondingly:

1. Gp = 7.

2. G = {quadratic residues in Z},}.
3. Gy = £1.

4. Go=(q"""") of (prime) order r.
Moreover, for any appropriate n Hecke characters with the corresponding condi-
tion exist.

Proof: This follows from Propositions 2, 3 and 4 along with Theorem 4. The
last assertion in the Theorem follows from the fact that any finite Z[G]-module
can be realized as a quotient of Cg. n

7. Multiplicities of L-packets induced from elliptic tori: the general
case

What happens for general n? Suppose first that n = p* is a prime power. Let
VT denote the radical of an ideal I.

LEMMA 5:

L. /(p(c = 1)) = /(6 — 1) = € *((p)) in Zpm [Z,] for any m.
2. Ife(z) =1 mod p then zP" — 1 in the (p)-adic topology.

Proof:
1. Immediate since (¢ — 1)* € (p(¢ — 1)) and (o — 1) = ¢ 1(0).

2. Follows from z — 1 € /(p(o — 1)) in Zym [Zy,]. |

ProPOSITION 5: Ifn is a prime power |Gyl |p(n).

Proof: Indeed, by Lemma 3 we may assume that (o —1)8 is not p-torsion. Also,
Lemma 4 and its proof are still valid. We therefore see, by the same argument
as in Theorem 4 that € induces a homomorphism & Gg — Z;. Let z be in its
kernel. For every s we get by part 2 of Lemma 5 that

(13) (0 -1)z" "= (0 - 1)0+ (0 — 1)p°y.H

for some r and y, € Z[G]. On the other hand z? @ ~,, 6 so that again by Lemma
3, n(o — 1)aP 8 = n(o — 1)0*@ for some i. We conclude that

+k

(14) n"(oc —1)z?" §=n"(o —1)f.
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From (13) and (14) it follows that 2?70 ~, 6. Indeed, n"p*(oc — 1)ys6 = 0.
However (o — 1)y,0 all belong to a finitely generated group of characters, and
cannot have arbitrarily large orders, and thus p*(o — 1)y,6 = 0 for some s. Thus
Ker¢ is a p-group and since |Gg| < n we get the required. 1

It is natural to ask whether Proposition 5 remains true without the assumption
on n. However, this is not true in general as the following example shows.

Let n = 3q for prime ¢, H an elementary Abelian finite g-group, {x;}i=o0,1,2
characters on H, such that no one is the power of the other but xo+x1+x2 =0.
Let A = H x ... x H {n times) and v be the character of A with components
0,0,0,x0, X1,X2:---5(¢ — Dxo, (@ — D)x1,{g — 1)x2. Realize A as a quotient
Z|G)-module of Cg with ¢ acting as a cyclic shift. Thus we obtain a Hecke
character 6. In this case Gy ~ Z,;. To see this, we have to know for which
@ € Zp Tof ~y 0. Let @ = 38+ 1 and a € A. Clearly, (0%v(a))i=0,.. n-1 =
(6i¢])i=0.1,2,j=0,....q—1 for some (¢;)i=0,1,2 and (Gi)i=o,1,2 With (p¢1(> = 1. Thus,
for v = zqv, (6" (a))izo,...n-1 = (¢§Cij)z'=0,1,2,j=0,...,q—1, with ¢; = n;¢; and
7/Mi—1 = Cf,i =1,2. Since (o(1(s = 1 either at most one of them is 1 or all are
1. In the first case it is evident that {o%v(a)}i=0,.. n—1 = const{o*'(a)}i=o,..,n—1
as multi-sets. In the latter case 7; does not depend on ¢, and we get the same.
Thus, z3g+1 € Go. It is easily seen that x3541 %5 73,410 when 8 # v mod q.
On the other hand if o = 35 or @ = 38 4 2 then 2,8 & Gy, because x40 %44 0.
For example (03 — 1)z,v equals 0 in the first case and

(B(xo + x1), B(x1 + x2), B(x2 + X0), Bxo + x1)5- )

in the latter, and neither can be the same as (0¢ — ¢7)v for any @ # j.
What remains true for general n is that M({L(#(9))) depends only on
Ann((c — 1)6) (this is not true for the ordinary multiplicities; cf. [B]).
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