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A B S T R A C T  

We define the multiplicity and the global multiplicity of an L-packet of 
SL(n), unifying lack of multiplicity one and non-rigidity of L-packets. 
The first examples of these phenomena were given by Blasius. Giving 
a heuristic approach to its calculation, based on Langlands' Tannakian 
formalism, we conjecture that the global multiplicity is bounded in terms 
of n only. We justify the heuristics in a special case of L-packets attached 
to Hecke characters on an Abelian or p-extension. We then focus on L- 
packets lifted from endoscopic tori. A full description of their global 
multiplicities is given in the case where n is prime. 

1. I n t r o d u c t i o n  

Let  G be  a reduct ive  group defined over a number  field F .  The  cusp ida l  s p e c t r u m  

of G ( F ) \ G ( A F )  (with a given centra l  character )  decomposes  d iscre te ly  into a 

sum of i r reduc ib le  representa t ions ,  each occurr ing wi th  a finite mul t ip l ic i ty .  In  

the  case where  G = GL(n )  all mul t ip l ic i t ies  are one in this  decompos i t ion  ([Sh]). 

Moreover ,  two cusp ida l  represen ta t ions  wi th  the  same Hecke eigenvalues a l m o s t  

everywhere  are  equivalent  ([JS]). Cuspida l  represen ta t ions  of SL(n)  are  i n t ima te ly  

re la ted  to  those  of GL(n) .  However the  s i tua t ion  for SL(n)  changes d ramat ica l ly .  

For  example ,  it  is known since [LL] t ha t  L-packets  of SL(2) can be  infinite, 

a t  least  in the  uns t ab le  case, hence naive s t rong  mul t ip l ic i ty  one cannot  hold.  
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More recently, Blasius constructed cuspidal representations of SL(n) of Galois 

type with multiplicity _> ~(n) (where ~0 is Euler's function). He also showed 

that  strong multiplicity one does not hold in the level of L-packets, so that two 

representations which are a.e. the same do not have to belong to the same L- 

packet. In this paper we will be interested in these two phenomena which tie 

up in the definition of global  mul t ip l i c i ty  (see below). The high multiplicities 

for SL(n) are not surprising, since the cuspidal spectrum of SL(n) has a natural 

action of GL(n, F)  on it by conjugation. If one takes into account those additional 

symmetries then the multiplicity is one. This is because 

I_~GL~(A) L2usp(SLn(F)\ SLy(A)) = L2UsB(GLn(F)\GL,~(A)) 11uSLn (A) GLn (F) 

(cf. ILL]). From a different point of view, high multiplicity is related to the 

fact that  two non-equivalent projective representations of a group may become 

equivalent when restricted to any cyclic subgroup. After defining the global mul- 

tiplicity of an L-packet and giving some heuristics and examples, we will focus 
on a particularly handy case of L-packets which are liftings of endoscopic tori. 

The examples given in [B] are a special case of this. It turns out that in this case 

the global multiplicity is given naturally by an order of an Abelian group. The 

problem of computing the global multiplicity reduces to a completely algebraic 

question in representation theory of finite groups. Our results are most complete 

in the case where n is prime. In that case we can give a complete classification 
of the global multiplicities of endoscopic representations. To state our result, let 

F C E be a cyclic extension of prime order p, and let E 1 be the torus of norm 
one elements. The Galois group Zp* and hence also the group ring Z[Zp], act on 
the Hecke characters of E 1. Let 0 be a non-trivial Hecke character of E 1 and 

let Ann(0) be its annihilator in Z[Zp]. The global multiplicity of the L-packet of 

SLp(F) associated to 0 is then given by the order of a group Go C Zp * depending 

only on Ann(0). The non-trivial Go are classified according to the following table 

I P [ Ann(0) [ Go [ [Gol I Comments I 
any (a - 1) Z* p -  1 Blasius' example 
any ( ( a -  1) 2 ) (Z;)2 •-12 

4k + 1 ((a - 1) 3) {=t=1} 2 

q,r primes, g(x) e Zq Ix] 
~ (q(a-i),pg(a)) (q r'-l) r g (x )  I c p ( x )  - x -i x--1 ' 

irreducible (of degree r s) 

* In this note Z~ will always denote the cyclic group Z/nZ. 
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(primes which are Fermat or Mersenne numbers are a typical example for the 

last row). The essential tool in proving, and even stating, the results is the base  

ch a nge  lift proved first by Arthur and Clozel ([AC]) (see also [Lab]). In the 

non-endoscopic case we can give examples of high multiplicity only if we assume 

the global Langlands conjecture (see below). I do not know of any example (even 

conjectural) which is non-endoscopic and not of Galois type. 

The contents of this paper are as follows. In Section 2 we review basic results 

about L-packets of SL(n). We observe that the multiplicity of all cuspidal repre- 

sentations within an L-packet is constant and we define it to be the multiplicity 

of the L-packet. We then define the global multiplicity (denoted by ,~4(.)) of an 

L-packet to be the sum of multiplicities of all L-packets which coincide with it 

almost everywhere. We can adapt the multiplicity formula of [LL] to the global 

multiplicity. We conjecture that the global multiplicity is finite and bounded in 

terms of n only. Indeed, there is every reason to believe that this should be true 

for any reductive group G. 

Section 3 is mostly heuristic. By analogy with the multiplicity formula we con- 

sider homomorphisms of a group into a given Lie group G. Two homomorphisms 

are equivalent (~) if one is a conjugate of the other by an element of G. A weaker 

notion (written ~ )  is that the images of each element are conjugate in G. The 

notion was introduced in [GW] (cf. [Lar}). The two notions are the same for 

G = GL(n, C) but not for PGL(n,  C). The deviation of weak equivalence from 

equivalence is "responsible" for high global multiplicities. This is made precise 

by Arthur's multiplicity formula lAG], which reduces to the multiplicity formula 

of ILL] in the SL(n) case. (In other cases, e.g. the group of norm one elements 

of a quaternion algebra, the multiplicity formula has another ingredient which 

may contribute to high multiplicity.) At any rate, the above deviation can be 

quantified and it is bounded in terms of G only. The argument resembles the 

usual proof of the finiteness of the number of nilpotent orbits in a Lie group 

([Ri]), together with a theorem of Jordan on linear groups. If one believes the 

Tannakian formalism of [L1] then this verifies the conjecture made in Section 2, 

simply by taking G = PGL(n,  C) (the L-group of SL(n)). Still motivated by the 

Tannakian formalism we study the difference between the above two equivalence 

notions more closely. Given a projective representation a of a group A, we define 

the set 

X(a)  = {/3: A > PGL(n,C):  ~ ~ a}/,~. 

The group Auto(a )  of those automorphisms ¢ of A~ Ker a such that  a o ¢ "~w a, 

acts (non-transitively in general) on X(a). If a is a projective representation of 
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the Langlands'  group then by the multiplicity formula the global multiplicity of 

the L-packet attached to c~ is IA'(c~)]. Of course, even if we replace the highly 

speculative Langlands group by the Well group, one does not know in general 

how to at tach an L-packe t / : ( a )  to a projective representation a. Even in cases 

where t:(~) is known to exist, it is not automatic that  A/l(t:(c~)) = ]2d((~)]. We 

finish the section by proving this equality for the special case where a is induced 

from a character on an extension field E for which either F C E is Abelian, or 

the normal closure of E over F is a p-extension. 

In Section 4 we give several examples. In the first one, 7r is attached to a Stone-  

von-Neumann representation of a Galois group isomorphic to a Heisenberg group 

of a 2m-dimensional symplectic space V over Zp. (More generally, V can be an 

Abelian group with a perfect alternating pairing on it.) The case m -- 1 was 

considered in [B]. The heuristics of Section 3 are applicable and X(a )  has the 

structure of the homogeneous space GL(2m, Zp)/Sp(2m, Zp) (here n = pro). In 

particular M(Tr) is larger than any polynomial in n. Also, in this example, it is 

possible that  the multiplicities of the L-packets composing the "L-bag" do not 

divide the global multiplicity. In particular they are not all the same necessarily, 

giving more motivation to the definition of global multiplicity. The second is a 

non-solvable example due to Borovic [Bo]. ~ is now a 9-dimensional projective 

representation of A6, the alternating group on 6 letters. This illustrates a case 

where A'(c~) is not a homogeneous space. It  is composed of two orbits of sizes 

1 and 2. Evidently, we can build a Galois representation factoring through a. 

Unfortunately, with the present knowledge this example cannot be translated to 

the automorphic side. However, we also give another example for which A'(c~) is 

non-homogeneous, and for which we can prove that  the global multiplicity of the 

corresponding cuspidal L-packet is computed as ]A'(c~)]. Finally, it can happen 

that  two representations (or rather their projectivizations) are weakly equivalent, 

even though one is induced from a character on a subnormal subgroup and the 

other is not monomial, and the group is solvable. This illustrates the difficulties 

in generalizing Theorem 2. 

The next three sections are devoted to a study of global multiplicities of the 

special case of L-packets defined by taking automorphic induction ~r (0) of a Hecke 

character of a cyclic extension E of order n. These are the endoscopic L-packets 

corresponding to elliptic tori. In this case the above heuristics are applicable. 

Moreover, X(c~) turns out to be a homogeneous space which is actually an Abelian 

group which we denote by Go. Here c~ is the projectivization of the Well group 
WE representation Indws 0. Thus the global multiplicity of the L-packet defined by 



Vol. 112, 1999 MULTIPLICITIES FOR SL(n) 161 

7r(0) is given by the size the group Go, which is fairly computable. As mentioned 

above, in the case where n is prime we have Go _< Z* and we can actually classify 

Go in terms of the annihilator of 0 in the group ring Z[Gal(E/F)] .  This is done 

in Section 6. If n is a prime power, then we still have IGol ko(n). For general n we 

have 1Gol < n, but it is not true in general that  lGol Ig,(n); we give an example 

for n = 3q, q prime that  Go ~- Zq. 

ACKNOWLEDGEMENT: This paper is essentially a part  of the author 's  thesis 

([Lapl]). I would like to express my deep gratitude to my thesis advisor Stephen 

Gelbart  and to Jonathan Rogawski. I would also like to thank Don Blasius for 

helpful discussions and suggestions. 

2. L - p a c k e t s  in SL(n) 

Let us recall the definition and the basic properties of L-packets in G = SL(n). 

See ILL], [B]. Recall that  an irreducible representation ~r of G(A) is called cuspi- 

dal, if m(Tr) = dimHom(Tr, L2~p(G(F)\G(A))) > O. 

Definition 1: Let # be an equivalence class of an irreducible admissible represen- 

tat ion of G = GL(n, A). The L-packet defined by ~ (denoted by/2(~))  is the set 

of equivalence classes of irreducible components of #It(A)" 

2.1 REMARKS. 

1. Equivalently, we can define an L-packet to be the orbit of an irreducible 

admissible representation of G(A) under the natural action of G(A). 

2. There is an analogous definition of L-packets in the local case, and if 

= ®~" then 

/2(#) = ®£(~v) ={@rrv: rfV C/2(#~) for all v, rr ~ unramified a.e.}. 

. Locally, if # is generic then any 7r E £(#)  is generic with respect to some 
non-degenerate character ¢ of the maximal unipotent. If  ~rl, 7r2 E £(#)  

are C-generic then 7rl = 7r2. Thus # la  decomposes to a direct sum of 

pairwise inequivalent irreducible representations. 

. Although we shall not use this fact, let us note that  even in the non- 

generic case, the decomposition of # t c  is multiplicity free. The argument 

in ILL] still applies, except that  one has to use existence and uniqueness of 

(possibly degenerate) Whit taker models (see [Z]). (For another approach 

using Langlands'  classification see IT].) 
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5. ~(~ '1)  : £ (~ '2 )  if and only if there exists an admissible character w such 

that  #2 -~ #1 ® w (locally and globally). 

6. If ~r is cuspidal then £(#)  contains a cuspidal representation. Conversely, 

any cuspidal 7r belongs to an L-packet which can defined by a cuspidal 

representation of (~. 

7. An L-packet is called s t a b l e  if all representations in it appear  with the 

same multiplicity in the cuspidal spectrum. It is conjectured (see [L4]) that  

an unstable L-packet is endoscop ic ,  i.e. it can be defined by ~r which is 

an a u t o m o r p h i c  i n d u c t i o n  from a cyclic extension F C E ([AC]) (or 

equivalently, # ® w ~- # for some Hecke character w ~ 1). This would be 

a consequence of the stable trace formula for G, as was done in the case 

of SL(2) in [LL]. 

8. Even in the unstable case, it is still true that  all cu sp ida l  representations 

in an L-packet /2 have the same multiplicity in the cuspidal spectrum. 

Indeed, if 7rl, 7r2 E/:. are cuspidal (or even generic), we can find an element 

E G(F)  such that  7rl, 7r~ are generic with respect to the same character 

¢ of AF/F. Consequently, by 3, 7r2 _~ ~r g and hence m(Tr2) -- m(Trl). Thus 

it makes sense to speak about  t h e  multiplicity of an L-packet, and we'll 

denote it by M(£ ) .  

9. Let us define equivalence relations on cuspidal representations of G: 

(a) #1 ~s  #2 if there exists a Hecke character w of C F  = ]F/F* such 

tha t  ~2 --~ ~1 ® w. 

(b) ~1 ~ #2 if for each place v there exists a character w v of F* such 

that  #~ ~ #~ ® w v. 

(c) ~1 " ~  ~2 if for almost all v the above holds. 

The multiplicity formula (which is written in ILL] in a somewhat confusing 

way) says that  for a cuspidal #, M(£(#)) can be calculated as the number 

of ~s-classes in the ,~¢~-class of #. In particular this number is finite. 

Let us call two L-packets i n s e p a r a b l e  (denoted by -'-) if locally they are the 

same almost  everywhere. Let us define the g loba l  m u l t i p l i c i t y  as .h4(£:) = 

~z : ,~L M(/ : ' ) .  Thus .M(£(#))  is given by the number of ,,%-classes in the , ,~ -  

class of ~. In general, it is not clear why this is always finite. We conjecture the 

following: 
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CONJECTURE 1: There exists a constant c(n) such that Jr4(/2) < c(n) for every 

L-packet E of  G = SL(n). 

We will show that  this conjecture is at least in accordance with the Tannakian 

formalism of [L1]. An analogous conjecture should be true for any reductive 

group. For n = 2 it was shown in ILL] that  the multiplicities of the unstable 

L-packets are 1; in the stable case Ramakrishnan ([Ra]) uses a nice L-function 

argument and a converse theorem for GL(4) to show that,  in the above language, 

global multiplicities are 1. Thus we can take c(2) = 1. For n > 2 Blasius gave 

examples where M(/2) > 1, as well as examples for which/2] -~ E2 but E1 ~/22. 

Actually, both  phenomena are implemented by the same type of examples, and 

we'll see tha t  for these examples 3, t(£)  = ~(n). 

3. S o m e  h e u r i s t i c s  

Let G be a reductive group over C and ¢: G ~ GL(N,C)  a faithful repre- 

sentation of it. Let H be a topological group. Consider continuous homomor- 

phisms 7r: H > G - -  call them G-representations. Two G-representations 7rl, r2 

are called G-equivalent (denoted by ~rl ~ c  zr2) if there exists g E G such that  

rrl(h) = g-l~r2(h)g for any h C H. They are ~¢-equivalent if after composi- 

tion with ¢ they become equivalent representations (in the usual sense). Finally 

zr2 ~w 7rl if for any element a e H,  zrl(a) and zr2(a) are conjugate in G (cf. [Lar], 

[GW]). When there is no ambiguity about the group G we will sometime write 

~s  for ~ c .  It  is clear that  ~ s ~ ~ ¢  for any ¢. 

THEOREM 1: Let G, ¢ be as above. There exists a constant C, depending only 

on G and N ,  such that for any compact group H and any G-representation ~r of  

it, the number of ~ ~-classes inside the ~¢-class of 7r is bounded by C. 

Proof." The proof will proceed in the following steps. 

Note: Henceforth we shall denote by ci(D) constants which depend only on the 

data D. 

1. If  H1 < H is of finite index k then a G-representation of H1 can be 

extended to H in only finitely many ways up to G-equivalence. This 

number  is bounded by Cl(k, G). 

The proof is a straightforward generalization of that  of Theorem 3.1 in 

[Ri] (cf. [Bo]). We want to reduce the claim to the case G = GL(N,  C), 

where it is well known. Let ~r be a G-representation of H1 and choose a 

transversal F of / /1  in H.  We will identify G, through ¢, with a subgroup 
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2. 

of O1 = GL(V).  Let g, gl denote the corresponding Lie algebras. Let 

U be a complement of g in gl which is Adg 1 g-invariant for any g C G. 

We shall regard extensions of 7r to G (resp. G1)-representations of H as 

points in X -- G r (resp. X1 = G [)  simply by specifying them on F. G 

acts on X by conjugation in each component - and analogously G1 acts 

on X1. Two extensions of 7r to representations of H become equivalent in 

G (resp. G1) if and only if the corresponding points lie in the same orbit 

of G'  -- CG(Tr(H1)) (resp. G~ = CGI(Tr(HI))). Thus we need to prove 

that  a G~-orbit 01 in X1 intersects only a bounded number of G'-orbits  

in X. We will prove that  any G~-orbit is open in 01 n X. For this we 

work infinitesimally. Let g~, g~ be the Lie algebras of G',  G~ respectively. 

Regard Xt  as a subvariety of End(V) r.  Denote by T(Y, y) the tangent 

space of a variety Y at a point y, and identify T(Y, y) with a subspace of 

T(Y1, y) if Y C !/1- Take x E W = O1 N X. Then T(01, x) = [~i, x] (here 

by an abuse of notations, the bracket is taken in 9I(V) coordinatewise). 

Also, T(X, x) = xg r where the product is taken in End(V) coordinatewise. 

Let Z be an irreducible component of W containing x. Then T(Z, x) C 
T(01, x) f3 T(X,x) = [g~,z] n xl~ r.  Let z E T(Z,x). Then there exist 

y E g~,g E gr such that  z = [y,x] = xg. Thus in each component 

(Ad~ x.r)(y + g'r) = Y. Writing y = Y0 + Yl with Y0 E g and Yl C U we 

find that  necessarily Y0 = (Ad01 x-r)(Yo + g~). Moreover, since y E g~: 

Y0 + Yl = Y = (Adm zr(h))y = (Adgl zr(h))(y0) + (Ad m ~r(h))(yl) for any 

h E H1. We infer that  Y0 C 0' and z = [Y0, x] e [g', x] = T(O, x) where 

O is the G'-orbi t  of x. Thus, we get that  O is open in O1. Since this is 

true for any O there are only finitely many G~-orbits in W, say m(01). 
To bound this uniformly, we know that  m(01) is bounded by the number 

of connected components of O1 n X. This, in turn, is majorized by the 

number  of connected components of the fibers of the map G~ x X ~ X1 

given by the action. This is bounded by a general theorem in algebraic 

geometry. We still have a-priori dependence on G~. However G~ can 

have only <_ c2(G) possibilities up to conjugacy in G1. In each conjugacy 

class we get the required boundedness by considering fibers of the map 

G1 x G~ x X ---+ G1 x X1 defined by (gl, g, x) ~-+ (gl, g~ " x). 

The Theorem is true in the case where H = T or 7_~. 

By step 1 we can assume that  G is connected. Let T be a maximal torus 

in G. Since H contains a dense cyclic subgroup, the image of H can be 

conjugated into T. Thus we are reduced to the case where G is a torus, 
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. 

4. 

where the claim is easy. 

Any compact connected semisimple Lie group admits only finitely many 

G-representations up to G-equivalence. 

This is true for G = GL(n) and the general case follows from Theorem 7.1 

in [Ri]. 

Let H < GL(n, C) be compact and assume that  H/Z(H) is finite. Then 

H contains an Abelian normal subgroup of index _< c3 (n). 

We can assume that  H acts irreducibly. Then /~ = H/Z(H) can be 

embedded in GL(n2,C) and hence by Jordan's  theorem it contains an 

Abelian normal subgroup of index _< c4(n) ([CR]). Thus we can assume 

that  H is Abelian. In particular H is nilpotent. Still assuming, as we may, 

that  H acts irreducibly and faithfully, the action is induced from some 

character on some subgroup H0. Hence any normal subgroup K < H0 is 

Abelian. 

5. Let H < GL(n,C)  be compact. Then H contains a subgroup K of index 

_< cs(n) of the form HoA where H0 is a connected semisimple compact 

group and A < Z(K). 

Let H1 be the connected component of H.  There are only finitely many 

compact  connected subgroups in GL(n,C) up to isomorphism. Write 

H1 = H~ • Z(H1) where H{ is the derived group of H1. The canoni- 

cal homomorphism ~p: H/H1 ) Out(H1) = Aut(H1)/Inn(H1) factors 

through a quotient of size <_ c6(n). This is because Out(H1) embeds in 

Aut(Z(H~))  x Out(H~) _~ GL(r ,Z)  x Out(H~) and it is a classical result 

that  finite subgroups of GL(r, Z) have bounded order (see e.g. IS1]). Let 

/42 = Ker ~p. T h e n / / 2  = H1C where C = CH(H1). C satisfies the condi- 

tions of 4 and hence contains an Abelian subgroup Co as above. Clearly 
! K = HIC o satisfies the desired property. 

6. Finally, we can prove Theorem 1. Let ~r be a G-representation of H,  which 

we can assume to be faithful. By step 1 we can suppose that  H = HoA 
as in 5. Let M be the centralizer of 7r(H0) in G, 7rA = 7rlA: A ~ M 

and ~ M  = q~lM" Note that  there are only finitely many possibilities for 

M up to isomorphism. Any other G-representation ~r' of H with 7r' ~ ~r 

which is G-equivalent to 7r on H0 gives rise to an M-representation of A, 

I ~'~M 71"A then 7r' H a  7r, so denoted by 7r~4, with 7r~ ~¢M 7rA. Clearly, if 7r4 

using step 3 we are reduced to the case where H is Abelian. H is then 
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the closure of a subgroup generated by d elements with d < cT(G). Let 

H = (xll  × H1. By using step 2 and the same argument as before we 

are reduced to the same question about M-representations of H1 where 

M = Cc(~(xl)). Thus we can use induction on d to get the required. 
| 

To see how to apply the theorem to study multiplicities, assume that the Tan- 

nakian formalism of [L1] exists. Recall that this formalism implies the existence 

of the so-called Langlands group /:F whose irreducible n-dimensional represen- 

tations correspond to the cuspidal representations of GL(n). As in [Ko] §12 we 

work with a form of it which is a compact group times ]~. Thus the image 

of the projectivization of any irreducible representation o f / : F  is compact. Let 

G' = PGL(n ,C)  (the L-group of G = SL(n)), and Ad: G' ~ GL(n 2,C) be 

the adjoint representation. From now on ~ will stand for ~v ' .  Let ¢ be an 

irreducible n-dimensional representation of / :F ,  and let £¢ be the corresponding 

L-packet in G. This L-packet corresponds to the projectivization ¢ of ~b into 

G ~. Suppose that the cuspidal representations ~i, i = 1, 2 correspond to the irre- 

ducible n-dimensional representations ¢i of £F.  Then in the notations of 2.1.9, 

~1 ~ 7r2 if and only if ~1 ~ ~2 and the same for ~ .  Thus, the multiplicity 

formula implies that  AJ(/:¢) is majorized by the the number of ~-c lasses  in the 

"~ad-class of 2- Hence Conjecture 1 is compatible with the Tannakian formalism 

in view of Theorem 1. To obtain the conjecture for a general reductive group 

G, we also need to know that the degrees of the virtual characters appearing in 

Arthur's multiplicity formula are bounded in terms of G only. 

Still motivated by the Tannakian formalism, let a be a projective representa- 

tion c~ of a group A. We define the set 

= {Z: Z 

measuring the difference between ,,~ and ,-~. Let J~4(c~) = IX(a)[. If (~ is 

a projective representation of /:F corresponding to the L-packet /: then one 

expects by the multiplicity formula that A/I(/:) = A/[(a). We will be able to 

prove this relation in a special case below, with /:F replaced by the Weil group 

WE. The set A'(a) has an additional structure. Let Aut~(c~) be the group of 

those automorphisms ¢ of A~ Ker a such that c~ o ¢ ~ c~. Then Aut~ (a) acts 

on A'(o~). This action is not transitive in general. In other words, it may happen 

that  fl ~ c~ but  their image subgroups in PGL(n,  C) are not conjugate. The 

stabilizer of ~ under the action is Aut~(c~) = {¢ E Au t (A/Ker  (~): c~ o ¢ ,,% (~}. 
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We cannot say much in general about the structure of the set X(c~). See examples 

in the next section. 

Let us introduce some more terminology and notations. We will deal with 

automorphic representations i n d u c e d  f r o m  cuspidals ,  in the language of [AC]. 

This class is preserved under cyclic base change and automorphic induction. We 

write these operations as BC E and AI R respectively. These operations are known 

to exist also if F C E is solvable, or more generally, if there exists a series of 

cyclic extensions from F to E. If ~i are cuspidal representations of GL(ni, AF) 

we shall write ~ = [ETri for the representation parabolically induced from the ~r~'s. 

By abuse of language we call ~ the direct sum of the ~r~'s. We also call ~i the 

components of ~. If ~ = []~ri,~' = [ ] ~  let c(~,~')  = @{(i,j): ~ri -~ ~ } .  This 

is the same as the order of the pole at s = 1 of the (partial) Jacquet-Shalika 

L-function L(# ® ~r', s). We have the following Frobenius reciprocity: 

(1) e(~, AI§(~'))  = c(BC~(~), ~') 

whenever ~, ~ are on GL(n, AF) and GL(m, AE) respectively. For any two cus- 

pidal representations 7r, ~' of GL(n, AF) we define 

A 

= e c F :  e 

and we put X(Tr) = X(Tr, ~). Let us call a Weil group representation a auto- 

morphic if there exists an automorphic representation ~(a) of GL(n), necessarily 

unique, with matching Langlands parameters almost everywhere. (Of course, 

conjecturely, every Well group representation is automorphic.) We say that  ~(a) 

is of Galois type. Finally we call an extension F C E p-subnormal if it can be 

embedded in a normal extension of F of p-power order. Recall that  by [AC] we 

know that  every representation induced from a Hecke character of a p-subnormal 

(or even sub-nilpotent) extension is automorphic. 

LEMMA 1: 

1. Let ~ be a cuspidal representation of GL(n, AF) and assume that [X(7~)I >_ 

n 2. Then ~r is of Galois type, IX(r)] = n 2, and the base change of  Tr to the 

Abelian extension of  F defined by X (~ )  is equivalent to n times a Hecke 

character. 

2. Let F C E be a solvable Galois extension and lr be a cuspidal represen- 

tation of  GL(n, AF).  Suppose that p is a component of  B c E I r  and let 

F C L C E be the field defined by H = {a e G a l ( E / F ) :  p~ ~_ p}. Suppose 

that F C L is subnormal. Then ~ is induced from L. 
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Proo~ 

1. 

2. 

By Theorem 4.2 in ([AC]) we can write 7r as the automorphic induction 

of some cuspidal representation X of GL(m, AE) with E l F  cyclic and 

m[E: F] = n. We claim that  ]X(x)[ > m 2. Indeed, ~r®w _~ 7r implies that  

\ ® W E  ~-- X ~ for some a E Gal (E /F)  where WE = woNm E. Thus for some 

a, ]X(x,X~)] > m 2. But then, ]X(x)I = ]X(x,X~)] > m 2. By induction, 

7r is induced from a Hecke character, and hence is of Galois type. The last 

two statements are true since they hold in the Galois side. 

Let BcE(~r) = d E]geHkC pg and BcL(Tr) = ~d~p~ with p~ cuspidal. 

Suppose without loss of generality that  BCE(pl)  contains p as a com- 

ponent. By the definition of L and the properties of base change we 

must have BC[(p1)  = mp for some m. We claim that  ~r = AIR(p1). 

Indeed, c(lr, A IF p l )  > 1. However deg(AIF(pl))  = [G: H]mdeg(p)  < 

[G: H]ddeg(p) = n, and we get the required. | 

THEOREM 2: Assume that F C E is an extension of  number fields which is 

either p-subnormal or Abelian. Let 0 be a Hecke character of E and ~ = indw EWF 8. 

Suppose that "Tr = ~(~) is cuspidal (i.e. ~ is irreducible). Then Ad(E(~-)) = .A4(~).* 

Proof: Note that  it will be enough to prove the following: 

(2) Every ~ ~"w ~ is of Galois type 

and 

(3) Every 4' " ~  ~ is automorphic. 

This will imply the Theorem, because the definitions of ~s  and ~ in the auto- 

morphic and in the Galois side are compatible by Chebotarev's  density theorem. 

Let then ~'  be given. We prove (2) using the results of [AC] by the following 

steps. 

1. Let K be the normal closure of F C E and let T, T' be the base change to 

K of ~, 7~' respectively. By the properties of base change we have T "w ~_r. 

Let G = G a l ( K / F ) .  By the properties of base change we can write T = 

[BgeGal(K/E)\OO ~ where ~g = 0 o NInE K, and T ~ = d ~ H \  G pg where p is a 

cuspidal representation of some GL(m, AK) and H = {g C G: pg "~ p}. 

* Recently, we were able to prove the Theorem for F C E nilpotent (see [Lap2]). 



Vol. 112, 1999 MULTIPLICITIES FOR SL(n) 169 

2. We have IX(p)[ > m 2. 

Indeed, since T ~ 7' we have an equality 

(4) Ls(T ® + ® w, s) = LS(T ' ® 7-' ® w, s) 

of Jacquet Shalika L-functions for any Hecke character w of K.  By the 

results of [JS] 

E Ords=l Ls(7 ® {- ® w, 8) -- n 2, 
Od 

while 

. 

E O r d ~ = l L s ( T ' ® ~ ® w ' s ) = d 2  E [X(pg'Pg')I 
w g , g ' 6 H \ G  

Thus, IX(p 9, Pg')l >- mS for some g, g' E H\G.  Then necessarily [X(p)] = 

IX(pg) i  = [X(pg, p¢)l >_ m S, 

By Lemma 1, p is of Galois type and 

(5)  Ix (p)1  = 

4. Let K C L be the Abelian extension defined by X(p). Then F C L is 

Galois and the base change of 7r' to L is a sum of characters. 

By the argument of step 2, taking into account (5), we must have IX(p, Pg)l 
= m 2 > 0 for any g e H \ G  and hence X(p) g = X(pa) = X(p). The other 

s ta tement  follows from part  1 of Lemma 1. 

5. Any component  of a representation induced from a Hecke character of a 

nilpotent extension is of Galois type. 

Indeed, if L C M is nilpotent and ~ is a Hecke character of M then it is 

wL wwW~ easy to see that  we have a decomposition IndwM ~; _~ @Ind Ai, into 
z 

a sum of irreducible representations, with Hecke characters Ai of fields 

M C Mi C L. Then #(~) _ []#(/ki) is the decomposition of #(~). 

6. Suppose that  F C K is a p-extension. Then by (1) and part  1 of Lemma 

1, ~'  is a component of a representation induced from a Hecke character 

of L. This proves (2) in that  case. 

7. Let us turn to the case where F C E is Abelian. First, we claim tha t  

d = r /$ .  
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For now, E = K and we know that  0 9 # 0 for any 1 # g E G. Comparing 

the orders of the poles at s = 1 for w = 1 in (4) we get n = de[G: HI. On 

the other hand n = d[G: H]m. 

8. Let us write cg(x ) = Xg/X for any g E G and a Hecke character X of E. 

Define H '  = {g E G: %(0) E X := X(p)}. Then H '  is a subgroup of 

order d 2, and if F C M '  C E is the field defined by H '  then M '  C L is 

nilpotent. 

Indeed, it is easy to see that  H' is a subgroup. Also, from (4) we have an 

equality 

{cg(O)g': g,g' E G} = d 2 U X(Pg'Pg') 
g,g'EH\G 

of multisets. Every element of X appears in the right hand side d 2 [G: H] = 

n times. This implies that  IH'I = d 2. In other words, g ~-~ c9(~ ) is a 

bijection between H '  and X. Let Xp be the p-Sylow subgroup of X. Then 

Hp := {g E G: cg(0) E Xp} is the p-Sylow subgroup of H ' .  Suppose that  

g E Hp and g' E Hq fo rp  # q. Then c9(c9,(0)) = %,(c9(0)) E XpMXq = O. 
Thus, H~ acts trivially on Xq. It  follows that  L / M '  is nilpotent. 

9. Let F C M C E be the field defined by H.  Then M C L is nilpotent. 

Equivalently, there exists k so that  Chl(.. .Chk(X)...) = 1 for any 

h l , . . . , h k  E H and x E X.  We know that  such a relation holds if 

h i , . . . ,  hk E H ~. Thus, it will be enough to show that  for any hi,  h2 c H 

and x E X there exists h'  E H '  and x '  E X such that  Chl (Ch2 (X)) = Ch, (X'). 
This will follow if we know that  Ch(Cg(0)) E X for any h E H,g  E G. To 

see this, let w = cg(O) E X(pgl ,p  g2) for some gl,g2 E G. Then 

y l  ® w ~ y~  = pg~h _~ pg, h ® wh = pg, ® ~h 

whence Ch(W) E X as required. 

10. From 4,5 and part  1 of Lemma 1 (applied to ~') we derive (2) in the 

Abelian case. 

11. The s ta tement  (3) is proved similarly. I 
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4. S o m e  e x a m p l e s  

We first begin with a definition. 

Definition 2: Let G be a finite group with center Z and let G = G/Z .  

1. A faithful irreducible n-dimensional representation zr of G (or the corre- 

sponding projective representation # of G) is called m i n i m a l  if the image 

of 7r in PGL(n ,C)  has order n 2. (Note that by Burnside's theorem, the 

above order is always >_ n2.) 

2. a cocycle a 6 H2(G,C *) is called minimal if the twisted group algebra 

C[G, a] is simple. 

LEMMA 2: The following are equivalent for a faithful irreducible n-dimensional 

representation Ir of  a finite group G. 

1. Tr is m in imal  

2. The cocycle on G defined by the projective representation # is minimal. 

3. Indz c ~ is isotypic where ~ is the central character of  zc. 

4. The character of zr vanishes outside Z. 

In that case, any irreducible n-dimensional representation 7 / o f  G is minimal and 

~' ~w ~ (in PGL(n,  C)). 

Proof: The equivalence of the above conditions is a standard exercise in repre- 

sentation theory of finite groups. The other assertion follows from 4. | 

For W Abelian, the Schur multipliers correspond to alternating bilinear forms, 

and the minimal cocycles correspond to the non-degenerate ones. Minimal rep- 

resentations and cocycles were first studied (not under this name) in [IM] (see 

[$2] p. 172 for another appearance of them). 

1. Our first example is an Abelian group W of order n 2 with a non-degenerate 

alternating form Q on it. This gives rise to an irreducible n-dimensional 

minimal projective representation a of W. Then Auto(a)  = Aut(W).  On 

the other hand Auts(a)  = Sp(W, Q). Any other projective minimal rep- 

resentation of W is of this form, and since all non-degenerate alternating 

forms are conjugate, we conclude that  X(a )  = Aut (W) /Sp(W,Q) .  In 

particular, if W be 2m-dimensional vector space over Zp, a is the Stone-  

von-Neumann representation of the corresponding Heisenberg group and 

X(a)  = GL(2m, 7_~)/Sp(2m, Zp). Of course, Theorem 2 is applicable here 

(and in fact, its proof in this case is much easier). 
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This example is also useful in showing that in general we don't  have 

M(/2)IAd(E ). In particular we can have E ~- E' with different (positive) 

multiplicities. Indeed, take m = 2 and take a 2-dimensional subspace V 

of W, generated by vl, v2. Let j3: Gal(F/F) > PGL(n, C) be a projec- 

tive Galois representation which implements a and let ¢}: Gal(K/F) > 
GL(n, C) be a lifting of it to a Galois representation. We can construct it 

so that  K is ramified over F at exactly one place v in which fl(Dv) ~ a(V) 
where Dv is the decomposition group. For any ¢ E Aut(W), let/2¢ be the 

L-packet attached to the projective Galois representation ¢ o j3 (that is, 

the one which is defined by a cuspidal representation corresponding to a 

Galois representation lifting it). In this case the correspondence of Galois 

representations to automorphic representations is functorial (globally and 

locally). We can infer by the multiplicity formula that M(E¢)  is given by 

the number of ¢ '  in GL(4, Zp)/Sp(4, Zp) such that ¢ ' ]V ~ e lY.  In other 

words, the condition is that Q(¢'(vl),¢'(v2)) = Q(¢(Vl),¢(v2)).  There 
are (p4 _ 1)(p3 _ p)(p4 _ p2)(p4 _ p3) such ¢'-s (in GL(4, Zp)) if ¢(V) is 

isotropic and (p4 _ 1)p3(p4 _ p2)(p4 _ p3) of them otherwise. 

2. Let us consider a non-solvable case. The following is a nice example of 

Borovic ([Bo]; see also [GW]). Originally it was studied in connection with 

embeddings of finite groups in the exceptional group Es(C), but it is also 

relevant to our case. Let A6 be the alternating group on 6 letters. It admits 

a non-trivial triple cover A6, which is unique up to isomorphism. There are 

3 irreducible 9-dimensional representations of A6. Exactly one of them, 

say c~, factors through A6. Thus Aut~(~) = Aut(A6) acts trivially on ~. 

(Recall that  A6 is special in that [Aut(A6): $6] = 2.) Let/~/, i = 1, 2 be 

the other 9-dimensional representations. Looking at the character table of 

A6 we see that  ~i ~w ~. Since A6 has no non-trivial characters, £ ~s • .  

Let ¢ be an outer automorphism of A 6 coming from $6. We claim that  

/~2 ~8 • o ¢. For otherwise /~ ~8 £ o ¢, giving rise to a projective 

representation of $6. However there is no non-trivial triple cover of $6 

([Su]). We conclude that  

= Zl, Z2} 

with orbits {~}, (¢]1,/~2}- Of course, we can find a Galois representation 

factoring through a. However, with the present knowledge, this example 

does not carry over to the automorphic side. 
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We now give an example showing that  there is no hope for the method 

of proof of theorem 2 to work if we only assume that  E/F  is subsolvable. 

More specifically, we will give an example of two representations 7rl, 7r2 of a 

finite solvable group, such that  ~rl is induced from a character of a subnor- 

mal subgroup, 7r2 is not monomial, but nevertheless their projectivizations 

are weakly equivalent. Thus, if we realize 7rl, ~2 as Galois representations 

then ~rl is automorphic, but it is not clear that  7r2 is automorphic. 

Recall that  if 

1 ----~ N >G ~ K  )1  

is an exact sequence of groups, and 7r is an irreducible representation of 

N such that  7rg --- 7r for all g E G, then the obstruction of extending ~r to 

G lies in H 2 (K, C*) and is given by 

c~(x, y) = d(gx)A(gy)d(gx~)-lTr(gxyg;1g;1). 

Here, {gx}xEN is any transversal of N in G and A(g) is an intertwining 

operator  of 7r and 7r g. In this case, Endc(IndGN 7r) _~ C[K,o~] 

To construct the sought after example, suppose that  we are given two 

Abelian-groups A, B of odd and coprime orders with an action 0/ of B 

on A. Suppose that  there exist two pairs of non-degenerate Q/Z-valued 

alternating bilinear forms {., "}i, [', "]i, i = 1, 2 on A and B respectively with 

the following properties: 

(a) B preserves (., ")i, i =  1, 2. 

(b) There exist maximal (., ')1 ([', .]l)-isotropic subgroups A1 (B1) of A 

(B) respectively so that  A1 is Bl-invariant and B1 acts trivially on 

A/A1. 

(c) There do not exist maximal {-, ")2 ([',-]2)-isotropic subgroups A2 (B2) 
of A (B) respectively so that  A2 is B2-invariant. 

Let Hi,i = 1,2 be the Heisenberg group attached to A, (.,.)i. This is 

a central extension of Z = Q / Z  by Ai with a cocycle corresponding to 

(', "}i. Let ¢ be the character z ~-+ e 2~i~ of Z and let Ti be the Stone-  

von Neumann representation of Hi with central character ¢. This is a 

minimal representation. Let Auto(Hi) be the automorphisms of Hi which 

act trivially on the center. The exact sequence 

0 ~ Inn(Hi)/Z ~ Auto(Hi) ~ Out~(//i) ~- Sp(A~, (-, ")i) ~ 0 
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splits. Thus, the extensions of Hi by a group K which acts via some 

5: K -+ Outc(Hi) are classified by H2(K, Q/Z). Let Gi be the extension 

of Hi by B defined by the cocycle/3/ corresponding to [., "]i. Note that  

W = G i / Z  "~ A x~ B. 

PROPOSITION 1: Under the above assumptions: 

(a) IndaH: Ti is isotypic. 

(b) Its irreducible component lri is a minimal representation. 

(c) Viewed as projective representations of W we have ~1 ~w 7r2. 

(d) Trl is induced from a subnormal subgroup of G1. 

(e) ~r2 is not monomial. 

Proof: 

(a) Clearly ~-~ _~ ~:i for any g c Auto(Hi). Since (IA], IBI) = 1, ~'i extends 

to a representation of Hi x B. Thus, the obstruction of lifting ~-i to 

Gi is given by /3i. Hence, End(IndGH: Ti) is simple and IndCH: Ti is 

isotypic. 

(b) This follows immediately from 1 and the minimality of Ti. 

(C) This follows from Lemma 2. 

(d) By our conditions we can lift the subquotient A1 to a subgroup of 

HI and BI to a subgroup of G1. The formula 01(zab) = ¢(z) defines 

a character on the subnormal subgroup K1 = ZA1B1, extending ¢. 

Thus 7rl = IndGKll 01. 

(e) Suppose that 02 is an extension of ¢ to a subgroup/<2 of G2. Af- 

ter conjugation we can assume that the image o f / (2  in W is A2B2 

with A2 < A, B2 < B. Then necessarily A2 is (-,-)2-isotropic and 

B2 is [., .]2-isotropic. Since A2, B2 cannot be both maximal by our 

conditions, 7r2 is not monomial. 1 

It is east to construct A, B, <., "li, [', "]i, i = 1,2 as above. 

4. Next, let us give an example for which theorem 2 is applicable and for 

which A'((~) is not homogeneous. Again, this is a minimal projective 

representation of a meta Abelian group G = A ~ B. Let A, <-,-) be a 

4-dimensional simplectic vector space over Zp for some p > 2 and let B1 

be the unipotent radical of the Siegel parabolic of Sp(A), acting on A by 
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OZ 1. Let H be the Heisenberg group attached to A. Put  B = B1 x B1, act- 

ing on A by c~1 x 1. Note that  the center of G is Z '  = A1 x (1 x B1) where 

A1 is maximal isotropic. Let now [-, "]1 (resp. [-, "]2) be a non-degenerate 

skew symmetric  form on B for which 1 x BI is isotropic (non-isotropic). 

As before, we construct from this data  two minimal projective represen- 

tations 7ri of G by inducing the Stone-von Neumann representation ~- of 

H to the extension of H by B defined by [., "]i. Here we use the fact that  

r extends to a representation of H ~ B. This is true since ~- = IndA H, 0 

where A' = ZA1 and O(za) = ¢(z)  is invariant under B (Z, ~b are as 

before). Thus 71" 1 ' ~ w  71"2 and Theorem 2 certainly applies. However ~rl is 

the projectivization of a representation induced from a character on the 

inverse image of Z' and this is not true for 7r2. Thus 7r2 is not obtained 

f r o I n  71 1 by an automorphism of G and 2((7h) is non-homogeneous. 

5. In the rest of the article, we focus on the case of representations induced 

from characters on a normal subgroup with a cyclic quotient. 

5. M u l t i p l i c i t i e s  o f  e n d o s c o p i c  L - p a c k e t s  i n d u c e d  f r o m  e l l ip t ic  tor i :  

bas i c  f ac t s  

Let us now turn into a special case, namely the simplest endoscopic L-packets - -  

those induced from elliptic tori. Let then E be a cyclic extension of F of degree 

n, and 0 a Hecke character of E. Let # = ~(0) be the representation of GL(n) 

given by the automorphic induction of 0. The existence of these representations 

was stated in [K] but was not proved before the general result of [AC]. (In the 

local case, the lifting was proved by Kazhdan in [K]; cf. [H]. See [HH] for a 

more complete history). #(0) will be cuspidal if and only if 0 g # 0 for any 

1 ~ g E G = Gal (E /F) .  Henceforth we assume that  this is the case. Fix a 

generator cr of ~. G acts on W~ b "" CE and on WE, hence also does Z[G]. It  will 

be convenient to use additive notation, e.g. ( a -  1)0 is the character a ~-+ O(aa/a). 

Consider the following equivalence relations on characters of CE: 

1. 01 ,-08 02 if there exists c~ C Z~ s.t. (a - 1)a~01 : (a - 1)02. 

2. 01 ~ 02 if for every a E CE there exists C E C* such that  the multi-sets 

{criOl(a)} and C{~riO2(a)} are equal. 

3. 01 "°aa 02 if Ado  ® ai01 ~- Ado  @ ai02 where Ad: GL(n,C)  --+ GL(n2,C) 

is the adjoint representation. 
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5. I REMARKS. 

1. e'-'s:::>r'°w:=>'X~ad. For n ---- 2 they are all equivalent. 

2. If 01 ~8 02 and x E ZIG] then x01 ~ x02. Similarly for ~ and Ha d. 

3. For all these relations the class of 0 depends only on its restriction to the 

norm one elements C~, = (a - 1)CE of CE. 

4. The above equivalence relations on characters reflect the corresponding 

relations for the Weil group representations induced by them, i.e., 

i ndw EWF 01 ~ IndW~ 02 ¢==v 01 ~ 02, and similarly for the others. 

To see this for ~ one has to note that  for any a E WE 

WF WF 0 T" Res<a ) Indw~ 0 = ( ~  Indl a~> ) N w~ 
r~WF/WE<~) 

5. Prom this we can infer that  #(01) ~ ~(02) ¢==* 01 "~ 02, and anal- 

ogously for Nw. This follows from the basic properties of automorphic 

induction, strong multiplicity one for GL(n), and Chebotarev 's  density 

theorem. 

6. Let 
a s - 1 

- - -  e f o r  e 
a - 1  

I t  is clear that  01 ~ d  02 implies that  there exists an a such that  01 ~ 

x~02. 

LEMMA 3 : I f 0 1  ,,~,~ 02 then nO1 ~,% nO2. 

Proof'. For each a E CE choose a permutat ion ~r of Zn and C E C* so tha t  

aiOl(a) = a~r(i)O2(a)C. We have (a i - 1)01(a) = (a '~(') - fffl)02(a), where 

= 7r(0). Multiplying over i and taking a = (a - 1)b we get n (a  - 1)01(5) = 

n(a  - 1)a~02(b). Similarly we get 

( 6 )  n ( a -  1)aiOl(b) = n ( a -  1)a~r(i)O2(b) 

for any i. A priori ~r depends on b but  now we can choose a permutat ion so that  

(6) holds for all b E A. | 

Let us define Go to be the equivalence classes of {x E Z[G]: x0 ~w 0} under 

the relation xO ~8 yO. By Remark 2 above, the product on Go makes sense. 



Vol. 112, 1999 MULTIPLICITIES FOR SL(n) 177 

THEOREM 3: Let  0 be a Hecke character o rE .  Then Go forms an Abel ian group, 

X(#(O))  ~- Go, and M(~(~(0) ) )  = IOol < n. 

Proof: It  follows from Remarks 6 and 2 that  Go is a group of order < n. Let 

co be a character of ]IF with Kera~ = F* Nm]I~. The cuspidal representations 

# which are automorphic induction from characters of E are characterized by 

the property that  ~r ® co ~- #, and thus they are stable under ~w. Let a = 

indw EWF 0: WF > PGL(n ,C)  and A = I m a .  We can assume that  a ( W E )  is 

diagonal. Choose ~ E WF above a. If 01 ~ 0 we can construct an element 

in Auto(A) sending the diagonal matrix (O(ag))ge6 to (01(ag))ge ~ for a E WE, 

and a(~)  to itself. This gives an isomorphism of Go with X(#(0)).  It  remains to 

invoke 5. II 

Remark:  

1. We could of course appeal to Theorem 2 to conclude that  A//(L:(#(0))) = 

IX(#(O))l,  but  this case is easy to analyze directly. 

2. The above characterization of cuspidal representations induced from 

characters (in the cyclic case) in terms of being self twists under a Hecke 

character is proved in [AC] only in the prime case. This is mainly for 

historical reasons. In any case Labesse ([Lab]) treats the general case. 

6. M u l t i p l i c i t i e s  o f  e n d o s c o p i c  L - p a c k e t s  o f  SL(n), n p r i m e  

We keep the same notations as in the previous section but in this section we will 

assume tha t  n > 2 is prime. Let e: Z[G] ----+ Z be the augmentat ion homomor- 

phism. 

LEMMA 4: Let  r e Zig] and suppose that  (~(T), n) = 1. Then  there exists  

¢ e Z[G] such that  ~b~r = m for some m E Z with (m,  n) = 1. 

~ " ~ n - -  I i Proof: If T = 2-,i=0 aicr then the equation ~bT = 1 is a linear system 

whose coefficients matr ix  is {ai - j} i , j=o ..... n-1.  This matr ix  has determinant  
n--1 x-'~n-- 1 ~-i4 I-[i=o ?--,j=0 ajq ~ where ~ is a primitive n-th root of unity. This product is 

congruent to e(~-) n mod(¢ - 1). Since (¢ - 1)~(n) = (n) in Z[¢] the Lemma follows 

from Cramer ' s  rule. | 

We say tha t  a character is t o r s i o n  (resp. n - to r s ion ,  ~ - to r s ion )  if its order is 

finite (resp. an n-power, relatively prime to n). 
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THEOREM 4: I f  Go ~ 1 then 8[c ~ is torsion, but not  ~-torsion and e induces an 

injective homomorph i sm o f  Ge into Z*. 

Proof: Suppose tha t  G e ¢  1. By 6, xa0,-~w 0 b u t  x~8 ~s  8 for s o m e a .  By 

L e m m a  3, n(x~  - a i ) ( a  - 1)0 = 0 for some i and by Lemma 4, (a - 1)0 is torsion. 

On  the other  hand, it follows from Lemma 3 tha t  (a  - 1)0 is not  ~-torsion, since 

xa8  ~s  8. Now, x8 ~s  0 for x E Z[G] means tha t  (x - a~)(a - 1)8 = 0 for some 

i, and by L e m m a  4 we get tha t  e(x) = 1. On the other  hand if xO ~w 8 with 

¢(x) = 1 then  by Remark  6 of Section 5.1 we get tha t  xO ,,,~ x~O for a E Z~, and 

again by L e m m a  4, a = 1, otherwise (a - 1)8 would be ~-torsion. | 

Now we want  to have some more information about  the group Ge. 

6.1 T H E  n - T O R S I O N  CASE.  

PROPOSITION 2: Suppose  that  O[c ~ is n-torsion and Ge 7 ~ 1. 

order n and one o f  the following holds: 

Then  8[c  ~ has 

1. ( a -  1)28 = 0 and then Ge = Z* or, 

2. 1 does not  hold but ( a -  1)38 = O. Then  Go -= {quadratic residues m o d n } ,  

o r  

3. 1 and 2 do not  hold but (a - 1)48 = 0 and n --- 1 (rood 4), in which case 

Go = {+1}.  

Proof." Suppose 1 ~ a E Go. By Lemma 3 we infer tha t  n(a  - 1)(x~ - a~)8 = 0, 

for some ft. Using L e m m a  4 once again we conclude tha t  n (a  - 1)8 = 0. 

Suppose tha t  1 holds. For any i, (a ~ - 1)O = (a - 1)xi8 = (a - 1)iO. The  same 

is t rue for xa8 for any a E Z* so tha t  

{ a i S ( a ) } = O ( a ) { ( a  i - 1 ) O ( a ) } = 8 ( a ) { i ( a  - 1)0(a)} 

and 

{a i xa8 (a ) }  = x~O(a){ i (a  - 1)x~O(a)} = x , O ( a ) { i a ( a  - 1)0(a)} 

and the first par t  follows since (a  - 1)0(a) is an n- th  root  of unity. 

Suppose now tha t  2 is satisfied. Let 8 = (a - 1)O(a), t = (a  - 1)20(a) .  Then  

we have (a - 1 ) a i 0 ( a )  = ( ( a  - 1) + x i ( a  - 1)2)0(a )  = s t  i, so tha t  (a i - 1)0(a) -= 
i--1 ~ j = 0 ( a  - 1)aJ0(a) = sit(i)  We have an analogous formula for xaO with s '  = 

(a  a - 1)O(a) -- sa t ( j )  and  t '  = t ~. Choosing t ¢ 1 and rewrite the  condit ion 

{ (a  i -  1 )O(a ) }=cons t { (a  i - 1)xeS} 
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as a congruence relation modulo n. (Note that  the implied constant is an n-th 

root of unity.) We get two polynomials in Z~ of degree 2 whose leading terms 

differ by a factor of a and whose images differ by an additive constant (as multi- 

sets). Since we can transfer the polynomials into monomials of degree 2 without 

changing this property, it is clear that  this can hold if and only if ~ is a quadratic 

residue mod n. 

Suppose now that  1 does not hold. Since xs0  ~ d  0 we know that  for any 

i, (Xs (a  ~ - 1) - a~(~ j - 1))0 = 0 for some /3, where necessarily (by Lemma 

4) j = ia. T a k i n g i  = 2 we find that  (a s - 1 ) ( a + l - a z ( a  s + 1 ) ) 0  = 0, or 

(a s - 1)(a - 1)(aX~_l + xs+z)8  = 0. Once again, by Lemma 4 we can infer that  

1 - / 3 = a + / 3 .  If a ~ - l  it means that  ( o - 1 ) 3 0 = 0 .  

I t  remains therefore to consider the case a = - 1 .  Certainly xs0  ~s  - 0 .  Since 

n(a  - 1)0 = 0 it follows that  (a - 1)us = 0 (in fact the two conditions are 

equivalent). For any a E CE, let ~i(a) = (a -- 1)iS(a),i = 0 , 1 , . . .  , n -  1. Let 
n - - 1  b = ~ i = 0  kiaia" A straightforward computation, generalizing the previous ones, 

yields 

(~n- l (b) , . - .  ,G0(b)) = 

(~n-1 ( a ) E  k,, ~ - 2  ( a ) E  k'~n_l (a)E iki,..., 
• ~ ~ k. ~o(a)E  k,~l ( a ) ~  ,k ,~2(a)~ (~)k, . ~n_l ( a ) E  (~-0  "). 

Let k < n be minimal such that  (a--1)k0 = 0 and suppose that  (a -1)k-~O(a)  ¢ 1. 

From the computat ion it follows easily that  every k-tuple ( ~ 0 , . . . ,  ~nk-~) of n- th 

roots of unity can be represented as (G0(b),... ,~k-l(b))  for some b of the above 
k-- I  

form. On the other hand, by the same computation aiO(b) = ~ j = o  (~)nj. The 

exponent can be an arbi trary polynomial (in i) of degree < k. We are reduced to 

the question of whether for an arbitrary polynomial f ( x )  over Z~ of degree <__ k, 

there exists c so that  

(7) { f ( i ) )  = { - f ( i ) }  + c 

as multi-sets. For f of degree 2 we saw that  this holds if and only if - 1  is a 

square. For f of degree 1 or 3 this clearly holds automatically if n > 3. However, 

this condition cannot hold for k = 4. For example, take f ( x )  = x2(x 2 - 1) and 

suppose that  (7) holds. Since the value 0 is obtained thrice and all other values are 

obtained an even number of times, c = 0. We could infer that  ~ i e z ~  f ( i )  Z = 0 
l l l _ J l  5 whenever l is odd. We can write this as )-~d=0(- ) (j) 2j+21 where 5m = 

~ i e z ~  im = ~1 if m = n - 1 and 0 otherwise. By choosing 1 to be the smallest 

odd integer >_ (n - 1)/4 we get a contradiction. These considerations complete 

the proof of the Proposition. | 
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R e m a r k :  In the same way as in par t  1 of the Proposi t ion it can be shown tha t  

for general n and a character  0 with (a  - 1)20 = 0, we have Go -~ Z*. The 

examples in [B] are of this type. 

6.2 CONDITIONS ON THE n-TORSION PART. Recall tha t  we want  to  classify 

the condit ion Go ¢ 1. We already know what  happens in the cases where 0Iv  ~ 

is either n- torsion or g-torsion. To treat  the general case let 1 ¢ c~ E Z* and let 

r1,¢ be the restrictions of 0 to the n-torsion and g-torsion parts  A n , A a  of ( a -  1)0 

respectively. We shall assume tha t  (a - 1)?], (a - 1)~ ¢ 0. 

PROPOSITION 3: O~ E Go it"an on ly  it"(a - 1)27] = 0 and for any b E (a - 1)A~ 

t he re  ex i s t s  t so t ha t  

(8) a i a ¢ ( b )  = a t+ i¢ (b )  [or all i. 

Proof:  Suppose tha t  a E Go. Arguing as before with Lemmas  3 and 4 we get 

tha t  n ( a  - 1)7/= 0 and there exists fi such that  

(9) J ( a -  1)¢ = (a - 1)x~¢. 

Choose a E An such tha t  ~ = ( a -  1)?](a) ¢ 1, but  ( a -  1)i?](a) = 1 for any i > 1. 

Take any b E Aa and write (s = (a s - 1)¢(b). By our assumption we have 

(10) {(a  s - 1)?](a)(a s - 1)¢(b))} = const{(a  s - 1)x~rl(a)(a ~ - 1)aZ¢(b)} 

and according to the computa t ions  of Proposi t ion 2 this means tha t  {~/~s} = 

const{~sa~i}. The  implied constant  is certainly an n- th  root  of uni ty so write 

it as ~t. Let  1r be a permuta t ion  achieving this equality. The condit ion ~s~s = 

~ t ~ ( s ) ~ ( s  ) implies tha t  ~s = ~( i )  and i = t + ~r(i)(~, so tha t  condition (8) is 

satisfied for all b E Aa. 

In the converse direction, one can reverse the arguments  to conclude tha t  

E Go as long as ( a - l ) 2 ? ]  = 0 and (8) is satisfied for all b E Aa. To prove the last 

s ta tement ,  note  first tha t  (8) implies tha t  @aS(a - 1)(a ~ - 1)¢ = ® a s ( a  - 1)2¢. 

Hence, (a  - 1)2(x~ - a ~ ) ¢  = 0 for some ft. However, (a  - 1)2Jn(a - 1) in 

Z[G], so tha t  (9) is satisfied. Now, by (9) and (8) applied to (a - 1)b we infer 

tha t  a s a ( a  ~ - 1)¢(b) = a '+ t+~(a  - 1)~(b) for some t. This means tha t  c = 

(a  ~ - a~+t+~)¢(b)  does not depend on i. However, c n = 1, whence c = 1 and 

(8) is indeed satisfied for all b E Aa. 

I t  remains to  show tha t  c~ E Go implies tha t  ( a -  1)27] -- 0. Assume on 

the cont rary  tha t  ( a -  1)27] 5£ 0. The  same arguments  as in Proposi t ion 2 

yield tha t  either ( a -  1)30 = 0 or c~ = - 1  and n - 1 (mod4) .  The  first 
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alternative implies tha t  n ( a - 1 ) 0  = 0 which contradicts our assumption.  Suppose 

then tha t  a = - 1 .  In condition (9), /3 = - 1 ,  i.e., 2(or - 1)¢  = 0, because 

otherwise (1 + a/3+~)(a - 1)¢ = 0 which would imply tha t  (a  - 1)¢  = 0 since 

(1 + 0 "/3+1) ~- ( 0  2(/3+1) - 1)/(~ z+I  - 1) is invertible. We already know tha t  (8) is 

satisfied. For any k we can take an element a E An such tha t  ( = (a - 1)2~(a) 

1,(a - lfi?(a) = ( k  but  ((r - 1)i~(a) = 1 for any i > 2. Writ ing the condit ion 

(10) using the computa t ion  of Proposi t ion 2 yields {((~)+ki(i} = C{(-(~)-ki~i}. 

Again, c = ( t  and if 7r implements this equality it is easy to see tha t  ~i = ~( i )  

and {Tr(s + i ) ,7¢(s  - i)} = {s + i T ,  s -  i7} ,  for s = 1 / 2 -  k, 7 2 = - 1  and any i. 

Taking s so that  (~+i -- (~-i  for each i (by (8)), we see tha t  (8) is satisfied for 

a -- 7 as well. This will contradict  the next Proposition. | 

PROPOSITION 4: Let  ¢ be as above and B = Am. Then  ¢ satisfies the  condit ion 

(8) for any  b E (a - 1)B i f  and only  i f  there exist  pr imes  q, r such that  

q T~ - 1 
n -  q T ~ _ , _ l ,  q ( a - 1 ) ¢ = O ,  ( c r - 1 ) g ( a ) ¢ - - - 0  

for some  irreducible po lynomial  g(x)  E Zq[x] which divides (x n - t ) / ( x  - 1) and 

ee E ( q ~ - ' ) .  In part icular a has a pr ime  order. 

Proof: Suppose first tha t  q ( a -  1)¢ = 0 for some prime q. The  set of all n-tuples 

of the form {(¢(b), ~ ¢ ( b ) , . . . ,  a n - l ¢ ( b ) ) :  b E (a - I )B}  can he thought  of as an 

ideal I in Zq [x]/(x  n - 1) and is therefore generated by a polynomial  f ( x ) I x  n - 1. 

Certainly x - l [ f (x ) .  In this sett ing condition (8) translates into the following: 

for any h(x)  E I there exists k so tha t  

(11) ¢(x) = x k h ( x )  satisfies ¢(x  ~) -- ¢(x) 

(unless otherwise indicated --- will always mean ( m o d x  n -  1)). Moreover, it is 

clear tha t  this k is unique unless h(x)  - 0 (since x -  1 E I) .  In part icular  suppose 

tha t  

(12) f ( x  ~) - x X f ( x ) .  

Let g(x)  = (x "~ - 1 ) I f ( z )  and let H = {h ( z )  E Zq[X]/(g(z)):  h ( x  ~) - h (x )  

(mod g(x))}.  This is well defined by (12). Let d = d i m H .  Clearly h(x)  E H 

if and only if ¢(x) = f ( x ) h ( x )  satisfies ¢(x ~) - x~¢(x).  This and (11) imply 

tha t  Ukez~  x k H  = Zq[x] / (g(x) ) ,  where the union is disjoint, except for 0. We 

get n(q d - 1) = qm _ 1 where m = deg(g). Clearly, this implies t ha t  m = r s 

and d = r ~-1 for some r prime. Also, the order of q in Z* is m. Hence, g(x)  

is irreducible over Zq. This and (12) imply tha t  a E (q). H can now be viewed 
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as the subfield of GF(q  "~) of the invariant elements  under  the t r ans fo rmat ion  

x ~-~ x ~, and thus has dimension m/[a[ .  Hence a has order r. It  is clear t ha t  

(a  - 1)g(~r)¢ = 0. 

The  a rguments  can be reversed provided tha t  (12) is satisfied. To see this, take 

a root  y of g(x)  and note tha t  f ( y ) , - 1  is of order n and hence can be expressed 

as y,X. 

I t  remains  to prove tha t  condit ion (8) implies tha t  q(a - 1)¢ = 0. I t  is a l ready 

clear t ha t  (a  - 1)¢ is q-torsion where q is de termined by a (a  represented in 

{ 0 , . . .  , n  - 1} is a q-power). Suppose on the cont rary  tha t  q(a - 1)¢ ~ 0. We 

can assume tha t  q 2 ( a -  1)¢ -- 0. Again we have the set { ( ¢ ( b ) , . . . ,  cr '~-l¢(b)) ,  b E 

(a  - 1)B} which can be thought  of as an ideal I in Zq2 [x]/(x n - 1). This  ring 

is not  a pr incipal  ideal domain  any more. However p roper ty  (11) still holds. 

Let  ¢: Zq2 [x]/(x n - 1) ) Zq [x]/(x n - 1) be the canonical homomorph i sm,  and 

let f ( x )  C I be such tha t  q f ( x )  ~ O. I t  is clear tha t  the  ¢ ( I )  is the corre- 

sponding module  for q¢ and hence by the first pa r t  of the proof  we know tha t  

Zq[X]/{h(x):  h ( x ) ¢ ( I )  - 0} has cardinal i ty q rs and is an irreducible module  

over Zq[x] / (x  ~ - 1). Hence it is equal to Zq[x]/{h(x):  h ( x ) ¢ ( f ( x ) )  - 0}. I t  is 

still t rue  as before tha t  [Jkcz,~ x k S  = M ,  where now H = {h(x): f ( x ) h ( x  ~) - 

f ( x ) h ( x ) } / { h ( x ) :  f ( x ) h ( x )  =_ 0} and M = Zq2 [x]/{h(x):  f ( x ) h ( x )  =- 0}. More- 

over, the  union is disjoint except  for 0. Again, this implies tha t  n -- (q'~ - 

1) / (q  d - 1) where [HI = q4, [M[ = qm. Hence m = r s. However this would 

imply  t ha t  the  canonical  surjection M ~ Zq[x]/{h(x):  h ( x ) ¢ ( f ( x ) )  - 0} is a 

bi ject ion and  this is absurd  since q is in the kernel. This  finishes the proof  of the 

Proposi t ion.  | 

6.3 FINAL CLASSIFICATION. 

THEOREM 5: Let  F C E be a cyclic extension o f  pr ime order n and let 0 be a 

Hecke character o f  E .  Denote  by O' its (non-trivial) restriction to the norm one 

elements.  Le t  Go C Z* be as above. Then  Ad(£(#(0) ) )  = IGol. Moreover Go ~ 1 

i f  and only  i f  one of  the following happens: 

1. O' is ~-invariant.  

2. ( a -  1)20 , = 0 (but not  5). 

3. n = l  ( m o d 4 )  a n d ( a - I ) 3 0  ' = 0  (but n o t h o r h ) .  

4. n = (qr* _ 1) / (qr  s-1 _ 1) for some primes q, r and some s, q(a - 1)0' = 0 

(but  qO' ~ O) and ng(a)O' = 0 (but  nO' ~ O) for some irreducible polynomial  

g(x)  E Zq[X] (of  degree r s) which divides (x n - 1) / (x  - 1). 
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Correspondingly: 

1. G o = Z  *. 

2. Go = {quadrat ic  residues in Z*}. 

3. G o = + l .  

4. Go = (q<-~) of (prime) order r. 

Moreover, for any  appropriate n Hecke characters with the corresponding condi- 

tion exist. 

Proof: This follows from Proposi t ions 2, 3 and 4 along with Theorem 4. The  

last assertion in the Theorem follows from the fact tha t  any finite Z[G]-module 

can be realized as a quotient  of CE. | 

7. Multiplicit ies of  L-packets induced from elliptic tori: the general 

case 

W h a t  happens  for general n? Suppose first tha t  n = pk is a prime power. Let 

x / I  denote  the radical of an ideal I .  

LEMMA 5: 

1. V/(p(~ - 1)) = V / ~ -  1) = ~-l((p))  in Zpm [~n] for any m .  

2. I f  e(x) ___ 1 m o d p  then x p~ -4 1 in the (p)-adic topology. 

Proof :  

1. Immedia te  since (a - 1) ~ C (p(a - 1)) and (a - 1) = e - l (0) .  

2. F o l l o w s  f r o m  x - 1 e - 1) )  i n  . 

PROPOSITION 5: I f  n is a pr ime power IGol I~(n). 

Proof: Indeed,  by L e m m a  3 we may assume tha t  (or - 1)0 is not/5-torsion. Also, 

L e m m a  4 and its proof  are still valid. We therefore see, by the same a rgument  

as in Theorem 4 tha t  e induces a homomorphism ~: Go ~-+ Zp. Let x be in its 

kernel. For every s we get by par t  2 of Lemma 5 tha t  

(13) (a  - 1)x~r+k0 = (or - 1)0 + (a  - 1)pSysO 

for some r and y8 C Z[6]. On the other  hand xP~O ~ 0 so tha t  again by L e m m a  

3, n(a  - 1)xP~ O = n(a - 1)ai0 for some i. We conclude tha t  

(14) n'~(a - 1)xP~+k O = n~(a - 1)0. 
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From (13) and (14) it follows tha t  xPr+kO ,.% O. Indeed, n'~pS(a - 1)ysO = O. 

However (a  - 1)ys0 all belong to a finitely generated group of characters,  and 

cannot  have arbitrari ly large orders, and thus p~ ( a -  1)y~O -- 0 for some s. Thus  

Ker ~ is a p-group and since I G01 < n we get the required. | 

I t  is na tura l  to ask whether  Proposi t ion 5 remains t rue wi thout  the assumpt ion  

on n. However, this is not  t rue in general as the following example shows. 

Let n = 3q for prime q, H an elementary Abelian finite q-group, {Xi}i=O,l,2 

characters  on H,  such tha t  no one is the power of the other  bu t  Xo+X1 +X2 = 0. 

Let A = H × . . .  x H (n times) and v be the character of A with components  

0, 0, 0,;g0, X1, X2 , . . . ,  (q - 1)X0, (q - 1)X1, (q - 1)X2. Realize A as a quotient  

Z[G]-module of CE with a acting as a cyclic shift. Thus  we obtain  a Hecke 

character  0. In this case Go -~ Zq. To see this, we have to know for which 

a E ~ x~O ~ O. Let a = 3fl + 1 and a G A. Clearly, (aiv(a))i=o ..... n-1 = 

(¢i~)i=0,1,2,j=0 ..... q-1 for some (¢i)i=0,1,2 and (~i)i=0,1,2 with ~0~1~2 = 1. Thus,  

for u' x ~ , ,  (cri,t(a))i=o . . . . . . .  1 ' j = = (¢i(i)i----0,1,2,j----0 ..... q--l, with ¢~ = Vi¢i and 

7li/~i_l = (i ~, i = 1, 2. Since ~0(1¢2 = 1 either at most  one of them is 1 or all are 

1. In the first case i t  is evident tha t  {ai , (a)} i=o ..... n-1 = const{cr i"(a)} i=o ..... n-1 

as multi-sets. In the latter case r h does not depend on i, and we get the same. 

Thus,  x3z+l E Go. It  is easily seen tha t  x3~+1 7~ xav+lO when fl ~ 3' mod  q. 

On  the  o ther  hand  if a = 3j3 or a = 3j3 + 2 then x~O f[ Go, because x~O ~Lad O. 

For example (a  3 - 1 ) x ~  equals 0 in the first case and 

(]~(Xo -[- X1),/~(X1 -[- X2), fl()~2 Q- Xo), ~()~0 -[- X 1 ) , . . . )  

in the  latter,  and neither can be the same as (a i - aJ)u for any i 5L j .  

W h a t  remains t rue for general n is tha t  A4(£(~(0)))  depends only on 

A n n ( ( a  - 1)0) (this is not  t rue for the ordinary multiplicities; cf. [S]). 
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